This document is Volume 3: Appendices Part 5 of the Tyrone – Cavan Interconnector Environmental Statement (ES). The whole ES consists of a number of documents printed separately and should be read together.
Table of contents

Volume 3 Appendices Part 1
- Appendix 2A Utility Regulator Letter
- Appendix 4A ECOFYS Letter
- Appendix 5A Outline Construction Environmental Management Plan (OCEMP)
- Appendix 5B Substation Drainage Technical Note
- Appendix 5C Minimum and Maximum 400kV Tower Foundations
- Appendix 5D Substation Planting Schedule
- Appendix 6A Section 1: Consultation Summary Response Tables and Responses

Volume 3 Appendices Part 2
- Appendix 6A Section 2: Consultation Responses 2006 - 2013

Volume 3 Appendices Part 3
- Appendix 7A DECC Code of Practice
- Appendix 7B Email from St. Jude Medical
- Appendix 8A Legislation and Planning Policy
- Appendix 8B NIEA WMU Response
- Appendix 9A Details of ASSI designations
- Appendix 9B Historical Ordnance Survey Plans
- Appendix 10A Consultations
- Appendix 10B Bat Appendices
- Appendix 10C Phase 1 Habitat Survey Target Notes
- Appendix 10D Plant Species List
Volume 3 Appendices Part 4
Appendix 10E Badger Appendix
Appendix 10F Breeding Birds
Appendix 10G Wintering Birds
Appendix 10H Article 6 ToLS
Appendix 10I Conservation Status
Appendix 11A Explanation of Noise Terms
Appendix 11B Line Noise Applet Prediction Notes
Appendix 11C Background noise levels recorded along the proposed overhead line route and substation in 2005
Appendix 12A Cultural Heritage Features
Appendix 12B Criteria for Impact Significance
Appendix 12C Ulster Museum Records
Appendix 12D Aerial Photographs
Appendix 12E Cultural Heritage Features within Wider Study Area.
Appendix 12F Built Heritage
Appendix 13A Individual Properties Assessment Table
Appendix 13B Cumulative Assessment Table
Appendix 14A Summary of Individual Land Parcel Impacts

Volume 3 Appendices Part 5
Appendix 17A Turleenan Substation Flood Risk and Surface Water Management
Appendix 18A Transport Assessment

For ease of use this document has been printed in A4 format. Should a larger format be required, an electronic version is available at www.nie.co.uk.
Alternatively a printed A3 version may be obtained by contacting NIE at:
NIE Major Projects
120 Malone Road, Belfast, BT9 5HT
Tel: 08457 643 643
Appendix 17A - Turleenan Substation Flood Risk and Surface Water Management
As of 4th May 2009, Faber Maunsell Limited has changed its name to AECOM Limited and has re-branded as AECOM, as part of our parent company’s strategy to integrate across business lines and regions globally.

AECOM is a global provider of professional technical and management support services with over 43,000 people in more than 100 countries and is a leader in the delivery of Building Engineering, Transportation, Water, Environment, Programme Management, Energy and Planning & Design services. As a result of this global integration process, we can provide a broad array of solutions, through numerous geographic locations, with highly capable staff and cutting-edge technologies to address your needs and the challenges you face.

Though our name is changing, our commitment to our clients and their projects remains the same.

Our people working with you will continue to work with you. Our goal remains to continue providing clients with high-quality, responsive service and to make this organisational change transparent to you as we move forward.

Some material contained within this document may refer to our previous name Faber Maunsell, but is also applicable to AECOM.

www.aecom.com

Prepared by: Peter Robinson
Associate Director

Approved by: Graham Knott
Regional Director

Turleenan Substation
Flood Risk and Surface Water Management Strategy

<table>
<thead>
<tr>
<th>Rev No</th>
<th>Comments</th>
<th>Checked by</th>
<th>Approved by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Draft Report</td>
<td>PMR</td>
<td></td>
<td>10/09/08</td>
</tr>
<tr>
<td>2</td>
<td>Revised Draft following amendments to access road route</td>
<td>PMR</td>
<td></td>
<td>27/10/08</td>
</tr>
<tr>
<td>3</td>
<td>Final Report</td>
<td>PMR</td>
<td>GK</td>
<td>05/12/08</td>
</tr>
<tr>
<td>4</td>
<td>Amended to reflect revised layout of development</td>
<td>PMR</td>
<td>GK</td>
<td>29/07/09</td>
</tr>
<tr>
<td>5</td>
<td>Updated following review comments</td>
<td>PMR</td>
<td></td>
<td>26/08/09</td>
</tr>
</tbody>
</table>

Dunedin House, 25 Ravelston Terrace, Edinburgh, EH4 3TP
Telephone: 0131 311 4000 Fax: 0131 311 4090 Website: http://www.aecom.com

Job No 60032220 Reference 60032220/EDI026 Date Created 15/08/2009

This document has been prepared by AECOM Limited (“AECOM”) for the sole use of our client (the “Client”) and in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document.

No third party may rely upon this document without the prior and express written agreement of AECOM.

f:\projects\45457\ible ns interconnector\eia\compiled es\draft es july 2009\tyrone-cavan interconnector july 2009\volume 2 - main text\individual chapters following review\fra\60032220-edi026v.doc
Table of Contents

1 **Introduction** .. 1
1.1 Background .. 1
1.2 Scope ... 1
1.3 Drawings .. 2

2 **Planning Context** .. 3
2.1 Planning Policy .. 3
2.2 Planning Considerations ... 3
2.3 Site Selection and Layout Design ... 3

3 **Site Description** ... 5
3.1 Existing Site ... 5
3.2 Proposed Development ... 5

4 **Flood Risk Assessment** ... 6
4.1 Existing Flood Risk .. 6
4.2 Future Flood Risk ... 7

5 **Conclusions** ... 9
5.1 Flooding ... 9
5.2 Drainage .. 9

6 **Recommendations** ... 11

7 **Technical References** ... 13

APPENDIX A – FIGURES

APPENDIX B – FLUVIAL FLOOD RISK

APPENDIX C – SURFACE WATER MANAGEMENT STRATEGY
This report has been produced for the purpose of presenting the findings of a Flood Risk Assessment and Surface Water Management Strategy, undertaken by AECOM, for Northern Ireland Electricity’s proposed development of the Turleenan Substation. This report has been prepared to support a Planning Application for the substation as part of wide scale proposals for the construction of a new strategic electricity connection between Northern Ireland and Eire.

The Flood Risk Assessment has been carried out following the guidance and requirements set out in Planning Policy Statement 15 (PPS15): Planning and Flood Risk and in consultation with the Rivers Agency and the Northern Ireland Planning Service.

The proposed application boundary of site of the substation includes land that is identified as being within the 1% AEP floodplain. However, the design of the substation has been carried out to ensure that the area of permanent development, incorporating the compound and access road, is out with the 1% AEP floodplain and the area within the 1% AEP floodplain is only to be used for additional drainage, landscaping and planting.

It is considered that there is a temporary risk of groundwater flooding during the construction phase.

As with any development there is a potential risk of increasing flooding elsewhere through increased surface water runoff. Additional mitigation has been identified and incorporated into the design to provide appropriate Sustainable Drainage Systems to ensure that the development will not result in any increase in flood risk elsewhere as a result of increased surface water runoff.

The substation and connection can be considered of regional and national importance and also classified as essential infrastructure it is considered appropriate for the development to be permitted, providing that appropriate mitigation measures are implemented.

The residual probability of flooding to the site has been assessed and is considered to be substantially less than 1% annually and, consequently, the proposed development and associated mitigation measures are considered to satisfy the requirements of PPS15 and are appropriate.
Glossary

FRA – Flood Risk Assessment
SWMS – Surface Water Management Strategy
RA – Rivers Agency
Q100 – the 100 year return period flood event

AEP – Annual Exceedence Probability refers to the statistical probability that an event may be exceeded in any single year. 1% AEP is equivalent to a 100 year return period event and 0.5% a 200 year event etc.

PPS15 – Planning Policy Statement 15 Planning and Flood Risk

Floodplain – area adjacent to watercourses where water will flow and/or be stored during a time of flood

SuDS – Sustainable Drainage Systems
1 Introduction

1.1 Background
AECOM has been commissioned by Northern Ireland Electricity (NIE) to undertake a Flood Risk Assessment (FRA) incorporating a Surface Water Management Strategy (SWMS) in connection with the proposed development of the Turleenan Substation – ‘the site’. The site is located approximately (~) 2km North-North-East of Moy, County Tyrone, Northern Ireland, shown in Figure 1.1. The site is proposed to be utilised for a substation to connect the existing national power grid to a proposed North/South Interconnector power line. The substation and associated access roads will comprise of an area of ~ 5ha of development, within a site area of 22ha.

Figure 1.1 – Location Plan

This report has been prepared to present the findings and results of the FRA and SWMS and is intended to be used as a supporting document for a Planning Application for the proposed development which comprises of the North/South Interconnector power line and the Turleenan Substation. This report has been prepared following consultation with the Rivers Agency and the Northern Ireland Planning Service on flooding issues and conforms to the requirements of Planning Policy Statement 15 (PPS15) - Planning and Flood Risk.

1.2 Scope
This report covers the following aspects:

- A description of the site and the proposed development (Section 2);
- Planning Context (Section 3);
- Flood Risk Assessment (FRA) (Section 4);
- Surface Water Management Strategy (SWMS) (Section 5);
• Conclusions (Section 6); and
• Recommendations (Section 7).

1.3 Drawings
The following drawings have been included within this report for reference purposes:

• **Figure 1.1** - Location plan;
• **Figure 2.1** - Potential Substation Sites
• **Figure 3.1** - Existing site plan and features
• **Figure 3.2** - Proposed Development Plan
• **Figure 4.1** - Existing 1% AEP Flood Extents
• **Figure 4.2** - Conceptual Surface Water Drainage System
2 Planning Context

2.1 Planning Policy

Consideration of Flood Risk is a requirement of planning control in Northern Ireland. The Department of the Environment is responsible for planning control and its agency, the Planning Service, administers its planning functions.

The Department’s planning policies are issued through Planning Policy Statements and Planning Policy Statement 15 (PPS15) - Planning and Flood Risk sets out the appropriate policies with respect to flood risk.

2.2 Planning Considerations

The planning policies contained with PPS15 have been considered during the design of the overall scheme, with the majority of activities and development, due to their nature, considered to be at a low risk of flooding.

The major area of flood risk is associated with the infrastructure located at ground level, in particular the substation at Turleenan.

The main flooding policy consideration associated with the Turleenan Substation is that part of the application contains existing 1% AEP floodplain. The extent of the 1% AEP floodplain is shown on Figure 4.1, Appendix A.

Planning Policy FLD1 states that development will not be permitted in the floodplain unless it is of ‘overriding regional importance’ or meets one of a range of exceptions.

In the case of the Turleenan Substation, it is considered that the scheme is of regional, if not national, importance and also fulfils the requirements of the following exception:

‘development where location within a floodplain is essential for operational reasons for example, navigation and water based recreation uses or transport and utilities infrastructure which has to be there’.

In the case of the proposed Turleenan substation, due to the location of the existing overhead power lines and towers and the surrounding topography the proposed location is considered essential for the development, both in terms of operation, but also in terms of providing mitigation to other environmental considerations.

2.3 Site Selection and Layout Design

2.3.1 Site Selection

During the evolution and optioneering of the whole scheme a number of options have been considered for the route of the scheme and also the location for the substation. The criteria for the location of the substation require that it is adjacent to the existing overhead power lines to allow connection to the grid and that the location is selected to minimise the length of the connection and hence, the number of additional towers required.

The criteria that have been considered include economic requirements, but also a wide range of environmental and technical considerations, including flood risk.

Initially three sites for the substation were shortlisted, which are shown on Figure 2.1, Appendix A. Of these three options, Site 2 is considered to have the lowest flood risk, being located adjacent to, but out with the floodplain, whereas Sites 1 and 3 are located entirely within the floodplains of the River Rhone and River Blackwater respectively. Therefore, Site 2 has been selected as being the most appropriate for the location of the substation.

2.3.2 Site Layout and Design

The layout, local positioning and orientation of the substation has evolved through the design process and has been heavily influenced by the requirements of ensuring that flood risk is appropriately managed. The proposed layout recognises that the substation is located in a
region with a potential to be flooded. Through the design development the substation has evolved from a position of being located within the 1% AEP floodplain and requiring land raising and associated floodplain compensation to the final proposals, where the main compound of, and access road to, the substation is located out with the 1% AEP floodplain.
3 Site Description

3.1 Existing Site

The proposed site is located ~3.5km to the south of junction 14 of the M1 motorway, with access to the site being provided from the B106, Trewmount Road, ~2km north of Moy.

A significant part of the site is located adjacent to the floodplain of the Rivers Rhone & Blackwater. The River Rhone is located to the north of the site and flows from northwest to south east to a confluence with the River Blackwater, which is located to the east of the site and flows from southwest to northeast. Part of the proposed development application boundary has been identified as being located within the 1% Annual Exceedence Probability (AEP) floodplain, that which is considered to flood with a return period of 100 years.

The site use is currently agricultural land, primarily used for grazing.

The main part of the site comprises of a relatively steep slope with ground levels at the west of the site reaching ~34m AOD and falling to the east to the lowest part of the site at ~16.7m AOD. The area of the site to the north, from the main compound to the B106 is located on land between ~24m AOD and ~15.0m AOD.

The B106 at the northern boundary of the site is constructed on a locally raised embankment where it crosses the River Rhone floodplain. At the entrance to the site the road is at ~16m AOD, rising to the west and falling towards the River Rhone. At the River Rhone the road crosses the river on a box culvert with the road level at ~17m AOD.

Downstream of this bridge the River Rhone flows under Clonetteevey Bridge to the River Blackwater, ~1.5km to the east of the site. The bridge is formed from two circular culverts. The River Blackwater flows in a north easterly direction to drain to Lough Neagh ~10km to the north.

A plan of the existing site and surrounding features is shown on Figure 3.1, Appendix A.

3.2 Proposed Development

The proposed development for the Turleenan Substation is to provide a connection to the existing 275kV electricity grid, to increase the voltage to 450kV and then connect to a new overhead power line to connect to the electricity grid in Eire.

This FRA is concerned with the flood risk associated with the development of the substation site and has not considered flood risks associated with elements of the connection route.

Sections of the proposed interconnector route cross or are adjacent to areas with a 1% EAP flood level. Where towers are located within existing flood plains the detailed design of the foundations and bases will take account of flood risk.

3.2.1 Substation Compound

The substation will comprise of the construction of a large relatively flat compound, with a total area of ~5ha, to accommodate a range of substation electrical equipment. This platform will be achieved by undertaking a significant excavation into the hillside, to provide a finished level for the platform of 17.75m AOD. No land raising will be carried out in the floodplain and no compensation storage to therefore required.

3.2.2 Access Road

An access road from the north of the compound will follow the contour of the hill to meet the B106 to the north of the site. The access road will be constructed at a level above the 1% AEP flood level to ensure that access to the site is maintained during flood conditions.

A temporary access from the new access road to the B106 will be formed during the construction phase of the compound, which will be located to the east of the permanent access and located within a small area of the 1% AEP floodplain.

A plan of the proposed substation and access route is shown on Figure 3.2, Appendix A.
4 Flood Risk Assessment

4.1 Existing Flood Risk

4.1.1 Flooding from Rivers

Consultation with the Rivers Agency has been carried out during the site selection and design for the substation. The Rivers Agency have provided guidance and information on appropriate design flood levels for the sites that have been considered and also made hydraulic modelling data of the River Rhone available to assist in carrying out this FRA.

The Rivers Agency have recommended that the appropriate level of risk for future development is the Q100 event, that with a 100 year return period. This is more appropriately referred to as the 1% Annual Exceedence Probability (AEP) event, i.e. there is a 1% probability that this level will be exceeded in any given year. An additional ‘freeboard’ allowance of 600mm, to accommodate climate change and uncertainties, should be added for design purposes.

Rivers Agency Flood mapping\(^1\) for the area indicates that part of site within the application boundary includes land identified as the 1% AEP floodplain.

Early correspondence with the Rivers Agency confirmed that the appropriate 1% AEP flood level for the Turleenan substation is 16.01m AOD. However, subsequent evaluation of the available model data, including a hydrological review of the modelled flows, has concluded that the flood levels for the site are higher than those previously stated, as shown in Table 4.1.

Table 4.1 – Flood Levels for the River Rhone

<table>
<thead>
<tr>
<th>AEP event (Return Period)</th>
<th>Upstream Flood Level – B106 Road Bridge (m AOD)</th>
<th>Downstream Flood Level – Cloneteevy Road Bridge (m AOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% (10)</td>
<td>16.39</td>
<td>16.09</td>
</tr>
<tr>
<td>4% (25)</td>
<td>16.49</td>
<td>16.10</td>
</tr>
<tr>
<td>2% (50)</td>
<td>16.56</td>
<td>16.12</td>
</tr>
<tr>
<td>1% (100)</td>
<td>16.61</td>
<td>16.13</td>
</tr>
<tr>
<td>0.5% (200)</td>
<td>16.75</td>
<td>16.15</td>
</tr>
</tbody>
</table>

The extent of existing flooding from the 1% AEP event is show on Figure 4.1, Appendix A.

The proposed level for the main compound of the development will be constructed at 17.75m AOD. Therefore, allowing a freeboard of 600mm added to the design flood levels, the site is considered to be at a sufficient level where the risk of flooding from the River Rhone will be substantially less than 1% AEP.

Freeboard allowances not only account for modelling uncertainties, but also include a provision for the effects of fast flowing water. As this is considered not to be present adjacent to this site, it is considered that there will be a further additional element of protection afforded to the site.

Further details of the hydrology and hydraulic modelling of the River Rhone are included in Appendix B.

\(^1\) http://www.riversagencyni.gov.uk/index/strategic-flood-maps.htm
4.1.2 Flooding from the Sea

Due to the location and topographical properties of the site, it is not at risk of flooding from the sea.

4.1.3 Flooding from Groundwater

The geotechnical investigation for the site, undertaken during August and September 2006 reports that groundwater is likely to be encountered during the excavation works for the site, with artesian conditions present.

It is considered that due to the nature of the site and the proposed excavation, there may be a risk of overland flows occurring from groundwater within the northern and western parts of the site. It is considered that this may result in relatively high flows during construction, which should reduce with time, although there may be some permanent seepage within the excavation.

Any occurrence of groundwater should be manageable as part of the construction process by a competent contractor.

4.1.4 Flooding from Land

The site of the substation compound lies downhill from a small area of land, which could generate surface water run-on to the site in the event of extreme rainfall. It is considered that the rate of runoff will not be significant due to the small area upslope and that appropriate perimeter drainage will convey runoff around the compound.

This drainage will also be required to manage any groundwater resulting from the excavation into the hill side.

A Surface Water Management Strategy (SWMS) is included in Appendix B, with details of the conceptual drainage design shown on Figure 4.2, Appendix C.

4.1.5 Flooding from Sewers

There are no sewers or additional drainage systems that are considered to present a flood risk to the proposed site.

4.1.6 Flooding from Canals, Reservoirs and Other Artificial Sources

There are no man-made or artificial features within proximity to the development that can be considered to present a flood risk to the site.

There are a number of local land drains and features which drain to the River Blackwater, located downstream of the site. Many of these drains are controlled by check valves; however, any failure of these drainage systems will not present a flood risk to the proposed development.

4.1.7 Existing Flood Defence Structures

There are a number of embankments located adjacent to the River Rhone, which have historically been formed from material arising from dredging of the watercourses. These embankments are recognised as informal flood defences, but have not been designed as such and are not considered to provide any formal protection to the site. Whilst these embankments provide some degree of protection to flood flows within the channels, modelling of the River Rhone shows that the embankments only provide protection for events up to 50% AEP. With a probability less than 50% AEP, the embankments are overtopped and do not provide any increased level of protection to the site.

4.2 Future Flood Risk

4.2.1 Loss of Floodplain Storage

There will be a temporary loss of floodplain storage as a result of the construction of the temporary access from the B106. This volume is considered to be not significant in respect to the effect that it will have upon the floodplain of the River Rhone or River Blackwater.

4.2.2 Increased Runoff

The flood risks associated with external influences on the site are not expected to be significantly increased. However, due to the changes in land use from the development there may be increased flood risk within and also downstream of the site as a result of the increased surface water runoff. Uncontrolled drainage from the development will increase the rates and volumes of runoff and has potential to increase flood risk. To prevent an unacceptable increase
in flood risk a SWMS has been developed to determine the requirements of the surface water drainage design.

Through the implementation of Sustainable Drainage Systems (SuDS) the rate of runoff can be controlled to ensure that runoff is not increased. SuDS can also provide additional environmental benefits to the development.

Further details of the SWMS are included in Appendix B, with details of the conceptual drainage design shown on Figure 4.2, Appendix C.

4.2.3 Access

The planning and design of the substation recognises that the probability of flooding on the surrounding public roads is higher than that for the substation and associated private access road.

This may lead to restrictions in gaining access to the site during extreme flood events. Therefore, it is considered that alternative transport arrangements may need to be available to provide access to the locality due to the potential for major traffic disruption during such extreme conditions.

Due to the probability of flooding to the surrounding land and public roads, an access/egress plan should be included within the management plan for the substation to ensure that alternative arrangements are allowed for in the event of flooding.
5 Conclusions

5.1 Flooding
A Flood Risk Assessment (FRA) has been carried out following the guidance and requirements set out in PPS15 and consultation with the Rivers Agency and the Northern Ireland Planning Service.

Although the development boundary includes land recognised as being in the 1% AEP floodplain, no development will be taking place within the floodplain with this area being utilised for drainage, landscaping and mitigation planting.

The development can be considered to be of regional importance and consists of essential infrastructure that has an operation requirement to be at this location.

Alternative locations and site layout have been considered to minimise flood risk and the site is being proposed to be constructed at an elevation where the risk of flooding will be substantially less than 1% AEP.

During the construction period of the substation the temporary alignment of the access road will encroach onto the floodplain, however, this is not considered to be significant, is temporary in nature and may be offset by providing temporary floodplain storage if considered necessary.

The risks of flooding associated with groundwater flooding is considered to be significant during construction, however, with appropriate drainage design to accommodate additional groundwater flows the risk can be mitigated to ensure that the residual risk is acceptable. This risk should be managed within the method statements for the construction of the compound.

Also, as a result of the development there is potential for incrementally modifying the flood risk downstream of the site, by increasing the surface water runoff due to the construction of impermeable areas. The measures required to mitigate the increase in surface water runoff have been developed through a SWMS.

5.2 Drainage
Drainage for the proposed development is proposed to include SuDS, which will provide attenuation and treatment to the increased surface water runoff that will occur as a result of the increased impermeable area of the development.

The development has been assessed with source and site controls to develop an outline strategy. The runoff from the future development will be controlled and limited to ensure that it does not exceed the runoff from the existing undeveloped site. The assessment has been carried out for all rainfall events up to and including the 1% AEP event, including an allowance for future climate change of a 20% increase in rainfall intensity.

A SWMS has been developed to assess the requirements of SuDS to mitigate the effects of the development on the increased surface water runoff and also to provide adequate treatment.
6 Recommendations

Whilst the proposed development is considered to have an annual probability of flooding substantially less than 1% from fluvial sources, it should be recognised that there remains a residual risk that can be further mitigated through appropriate design. This will ensure that operation of the substation will not be affected except under the most extreme circumstances.

Prior to construction the specific details of the drainage design and SuDS requirements should be developed, along with the overall development proposals, at the detailed design stage. The SuDS selections can be developed to provide increased source control where practicable; however, the detailed strategy will need to meet the requirements of the conceptual strategy as set out within this assessment.

Due to the size of the development and required earthworks, infiltration is considered to be appropriate; however, this should be confirmed if suitable ground conditions are encountered. Infiltration of runoff will require specific site testing but will lead to a better replication of the natural hydrological cycle, a reduction in the volume of attenuation storage required within the site and, potentially an overall reduction in runoff and hence, flood risk, from that presented by the current site.

The design of the SuDS elements should take into account the guidance included within the relevant documents including CIRIA reports C697, and C698.
7 Technical References

- The Planning Service – *Planning Policy Statement 15 (PPS15) Planning and Flood Risk*;
Appendix A – Figures

- **Figure 2.1** - Potential Substation Sites
- **Figure 3.1** - Existing site plan and features
- **Figure 3.2** - Proposed Development Plan
- **Figure 4.1** - Existing 1% AEP Flood Extents
- **Figure 4.2** - Conceptual Surface Water Drainage System
Appendix B – Fluvial Flood Risk

B.1 Hydrology

A hydrological assessment for the River Rhone has been carried out as part of this assessment and the results compared with the flows that were provided within the Rivers Agency model. There were some small differences between the two sets of data, which are considered to be normal within tolerances of hydrological assessments and are considered to be primarily based on different version of data used from the Flood Estimation Handbook.

In addition flow estimation for the River Blackwater has also been carried out.

River Rhone

The peak flows for the River Rhone have been estimated at a location just downstream of Clonteevy Bridge (IH 86350 58550) for a target event of 0.5% AEP. The estimation of peak flows was carried out using the FEH Statistical method, which estimates the peak flow discharges for specified return periods with respect to observed or transferred data.

The FEH statistical method involves the estimation of

- QMED, the meSWMSn annual maximum flood calculated from either the subject site or a donor site and catchment descriptors,
- Growth Curve(X_T), pooled from a group of hydrologically similar catchments
- Q_T, the flood magnitude, where T denotes the return period in years, calculated from the product of QMED and flood growth curves.

QMED: QMED is derived directly when there is a record of gauged floods of sufficient duration and quality close to the subject site. For an ungauged subject site, QMED can be estimated directly from the catchment descriptors or by data transfer from donor or analogue catchments.

Growth Curve, XT: Pooling group analysis as prescribed by FEH is required for the majority of gauged sites in the UK due to the relatively short duration of gauged records, with pooling group analysis essential for ungauged sites. The number of pooled gauging stations collectively should supply five times as many years of record as the target return period. An appropriate statistical curve is then fitted to the pooled gauge data to generate the pooled growth curve for the subject site.

Flood magnitude QT: The flood magnitude QT is then calculated by the product of QMED and growth factor, XT.

The QMED for the River Rhone, estimated by data transfer from donor catchments, is 10.26m³/s while the QMED derived directly from the catchment descriptors is 11.54m³/s

The Growth curve factor along with the peak flow estimated for different return period is shown in Table B.1.
Table B.1 - Peak flows for the River Rhone

<table>
<thead>
<tr>
<th>Return Period (year)</th>
<th>Growth curve factor (XT)</th>
<th>Peak flow (m³/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Using Data transfer from Donor catchment</td>
</tr>
<tr>
<td>50</td>
<td>2.255</td>
<td>23.15</td>
</tr>
<tr>
<td>100</td>
<td>2.564</td>
<td>26.32</td>
</tr>
<tr>
<td>200</td>
<td>2.902</td>
<td>29.79</td>
</tr>
<tr>
<td>500</td>
<td>3.401</td>
<td>34.91</td>
</tr>
<tr>
<td>1000</td>
<td>3.824</td>
<td>39.26</td>
</tr>
</tbody>
</table>

River Blackwater

The peak flow estimation for the River Blackwater was also carried using the FEH Statistical method. The peak flows were estimated immediately downstream of Emels Bridge (IH 88200 61200).

The QMED for the River Blackwater, estimated by data transfer from donor catchments, is 131.91m³/s while the QMED derived directly from the catchment descriptors is 274.47m³/s.

The Growth curve factor along with the peak flow estimated for different return period is shown in Table B.2.

Table B.2 - Peak flows for River Blackwater

<table>
<thead>
<tr>
<th>Return Period (year)</th>
<th>Growth curve factor (XT)</th>
<th>Peak flow (m³/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Using Data transfer from Donor catchment</td>
</tr>
<tr>
<td>50</td>
<td>1.874</td>
<td>247.23</td>
</tr>
<tr>
<td>100</td>
<td>2.039</td>
<td>268.93</td>
</tr>
<tr>
<td>200</td>
<td>2.200</td>
<td>290.19</td>
</tr>
<tr>
<td>500</td>
<td>2.410</td>
<td>317.88</td>
</tr>
<tr>
<td>1000</td>
<td>2.560</td>
<td>337.69</td>
</tr>
</tbody>
</table>

B.2 Hydraulic Modelling

A Hec-Ras 1D steady state model of the River Rhone was made available by the Rivers Agency for this assessment. This model has been reviewed and the hydrological inputs amended to reflect the hydrological assessment outlined above. The extents and nature of the geometrical information used within the model have been reviewed and considered appropriate for the assessment.

The model has been used to simulate flood levels adjacent to the site, which are presented in Table B.3.
Table B.3 – Flood Levels for the River Rhone

<table>
<thead>
<tr>
<th>AEP event (Return Period)</th>
<th>Upstream Flood Level - B106 Road Bridge (m AOD)</th>
<th>Downstream Flood Level – Clontheevy Road Bridge (m AOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% (10)</td>
<td>16.39</td>
<td>16.09</td>
</tr>
<tr>
<td>4% (25)</td>
<td>16.49</td>
<td>16.10</td>
</tr>
<tr>
<td>2% (50)</td>
<td>16.56</td>
<td>16.12</td>
</tr>
<tr>
<td>1% (100)</td>
<td>16.61</td>
<td>16.13</td>
</tr>
<tr>
<td>0.5% (200)</td>
<td>16.75</td>
<td>16.15</td>
</tr>
</tbody>
</table>
Appendix C - Surface Water Management Strategy

C.1 Approach
The runoff from the site is proposed to incorporate Sustainable Drainage Systems (SuDS) to provide natural treatment and attenuation to runoff which, as a result of the development, will be increased in both volume and peak rates, due to the increased impermeable area.

To assess the impact of the development on the surface water runoff from the site, initial consultation has been undertaken with the Rivers Agency to determine the required level of attenuation.

C.1.1 Sustainable Drainage Systems (SuDS)
The opportunity to incorporate SuDS within the development has been identified and, where appropriate, the use of SuDS has been adopted. To help achieve the optimal use of SuDS, a management train approach has been undertaken to identify the most advantageous solution, according to site location, character and operational requirements. This procedure is presented in Table C.1.

Table C.1 Management Train Procedure

<table>
<thead>
<tr>
<th>Management Train Stage</th>
<th>Considered in the design of</th>
<th>SuDS Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prevention</td>
<td>Building layout.</td>
<td>The SuDS selection process included in CIRIA guide C697 has been used to help identify the most appropriate SuDS techniques for the different management train levels.</td>
</tr>
<tr>
<td>2. Source Control</td>
<td>Building and sub catchment layout.</td>
<td></td>
</tr>
<tr>
<td>3. Site Control</td>
<td>Sub catchment/ Catchment layout.</td>
<td></td>
</tr>
<tr>
<td>4. Regional Control</td>
<td>Catchment layout.</td>
<td></td>
</tr>
</tbody>
</table>

SuDS techniques, which have been considered and adopted within the overall scheme design, have been selected from proven techniques/solutions that include the following:

- Permeable paving;
- Green roofs;
- Bio-retention;
- Filtration techniques;
- Grassed filter trips;
- Swales;
- Infiltration devices;
- Filter drains;
- Infiltration basin;
- Extended detention ponds;
- Wet ponds;
- Storm water wetlands; and
In order to produce a successful detailed SuDS solution, the amenity value of proposals and the quality and quantity of the surface water discharge need to be considered for each management train stage. This has been achieved by adopting the CIRIA guide C697 - *The SUDS manual* which uses a scoring system to evaluate the main aspects of surface water discharge by considering the following issues:

- Hydrological;
- Land use;
- Physical site features;
- Community and environment; and
- Economic and maintenance.

C.1.1.2 SuDS Selection

By assessing the site proposals, ground conditions, available land and required design criteria, the management train approach has identified that a range of options are applicable to the site.

C.2 Criteria

C.2.1 Attenuation

Following consultation, with the Rivers Agency and the requirements of PPS15, the drainage has been developed assuming that the runoff from the site will not be increased following development. Therefore, the discharge rates from the post developed site will be controlled to match those from the undeveloped site for all events up to and including the 1% Annual Exceedence Probability (AEP) events, equivalent to the 1 in 100 year events, including an appropriate allowance for future climate change.

C.2.2 Required Treatment Volume

The design treatment volume (V_t) is designed to capture 75 – 90% of the storms in a year. This ensures the smaller volumes of runoff are stored within the treatment systems and appropriately treated. The smaller volumes of runoff are those in which pollution is most concentrated, as the initial runoff from surfaces washes the pollutants into the surface water collection system.

The calculations of V_t are based on formulae and guidance published in CIRIA report C697 - *The SUDS Manual*.

C.2.3 Climate Change

The SWMS has taken into consideration guidance in PPS15, which recommends that an allowance for a 20% increase in rainfall intensity is included, which is applicable to a design horizon to 2085.

C.3 Methodology

The proposed SuDS for the site have been developed by working through the following stages associated with developing a strategy and outline concept:

- Calculation of ‘greenfield’ or undeveloped runoff rates;
- Determination of a strategy to incorporate the selected elements of SuDS;
- Determination of treatment requirements for the site;
- Identification of sub-catchments;
- Modelling of individual elements within sub-catchments; and
- ‘Cascading’ elements together to provide a complete analysis of whole development site.

C.3.1 Existing Site Runoff

The existing site runoff has been estimated using the guidance from the Institute of Hydrology Report 124 (IoH124). The calculation is based upon the following factors:
C.3.1.1 Area
Catchment Area (ha), the area of the site has been set to 1ha to determine runoff rates per unit area.

C.3.1.2 SAAR
Average annual rainfall (1941-1970) from Figure II.3.1 of the Flood Studies Report (FSR) or equivalent, which is 875mm for this location.

C.3.1.3 Soil
Soil index of the catchment from FSR Figure I.4.18 or Wallingford Procedure Volume 3. Soil Types 1 to 5 have Soil Index Values of 0.15, 0.3, 0.4, 0.45 and 0.5 respectively. For the Turleenan Substation site, the soil is recorded as Type 1, with a Soil Index Value of 0.15, this is described as ‘(i) Well drained permeable sandy or loamy soils and shallower analogues over highly permeable limestone, chalk, sandstone or related drifts; (ii) Earthy peat soils drained by dykes and pumps; or (iii) Less permeable loamy over clayey soils on plateaux adjacent to very permeable soils in valleys’.

C.3.1.4 Urban
This is the value relevant to how developed the existing site is, taken as 0 for the Turleenan Substation site which is completely greenfield.

C.3.1.5 Region Number
The region number of the catchment, based on Figure I.2.4 of the Flood Studies Report, which is 11 for Ireland.

C.3.2 Rainfall
Design rainfall for the site has been derived from Flood Estimation Handbook (FEH) catchment data for the site. The Standard Annual Average Rainfall (SAAR) for the site is recorded as 875mm from the FSR, or 900mm from FEH. An allowance of 20% has been allowed for within the design to account for future increases in rainfall intensity as a result of expected climate change.

C.3.3 Topography
The site topography used within the development of the SWMS has been obtained from the site survey provided by Northern Ireland Electricity and is supplemented by regional LIDAR data.

C.4 Modelling

C.4.1 Approach
The modelling of the conceptual drainage system has been undertaken by calculating the access road and paved areas. The areas included within the model have been determined from the proposed development layout as shown on Figure 4.2, Appendix A.

The drainage strategy has been developed through hydrological modelling of the site using Micro Drainage’s WinDes software. WinDes is recognised as leading software for carrying out analysis and design of drainage systems.

C.4.2 Discharge Controls
Each element is proposed to be controlled to maximise the local attenuation and treatment before overflowing to the next constituent component in the system. The controls have been designed to ensure that there will be no flooding within the site for rainfall events up to and including the future 1% event.

C.4.3 Simulations
The model of the proposed system has been analysed with a range of rainfall events. The events include those with the annual probability that is of particular interest, i.e. 1% and 3.33%, and for a range of durations from 15 minutes up to 10080 minutes, or 7 days. This is checked to ensure that the critical duration event is included within the analysis. The simulations also include the appropriate allowance for climate change.

C.5 Results

C.5.1 Existing Site Runoff
The runoff from the overall existing site has been calculated using the methodology outlined in Section C.3.1 and the results are summarised in Table C.2 below.
Table C.2 Undeveloped (Greenfield) Site Runoff

<table>
<thead>
<tr>
<th>Return Period</th>
<th>Runoff (l/s/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>2</td>
<td>0.50</td>
</tr>
<tr>
<td>5</td>
<td>0.63</td>
</tr>
<tr>
<td>10</td>
<td>0.71</td>
</tr>
<tr>
<td>20</td>
<td>0.79</td>
</tr>
<tr>
<td>25</td>
<td>0.81</td>
</tr>
<tr>
<td>30</td>
<td>0.84</td>
</tr>
<tr>
<td>50</td>
<td>0.89</td>
</tr>
<tr>
<td>100</td>
<td>0.97</td>
</tr>
</tbody>
</table>

C.5.2 Treatment Volume, \(V_t \)

The design treatment volume, \(V_t \), has been calculated from the following formula and will be drained from the structure over a 24 hour period:

\[
V_t (m^3 / ha) = 9 \times M - 60 \times \left(\frac{\text{SOIL}}{2} + \left(1 - \frac{\text{SOIL}}{2}\right) \times I \right)
\]

For the Turleenan substation site:

The statistical 5 year 60 minute rainfall event, M5-60, is predicted to be 16.8mm

\(\text{SOIL} = 0.15 \)

\(I, \text{impervious area} = 0.23 \), assuming that the development area draining to the SuDS is 23% impermeable, reflecting that large areas of the substation compound will be formed from gravel.

Therefore:

\[
V_t (m^3 / ha) = 9 \times 16.8 \times \left(\frac{0.15}{2} + \left(1 - \frac{0.15}{2}\right) \times 0.23 \right) = 43.5 m^3 / ha
\]

The \(V_t \) for the catchment has been calculated and treatment is proposed to be provided within a wetland to the south of the main compound.

C.5.3 Proposed SuDS

A conceptual SuDS has been developed to demonstrate that onsite drainage can mitigate the effects of the development in providing attenuation to the increased runoff. The SuDS will also provide treatment to the additional runoff, to prevent any deterioration in surface water quality.

The proposed SuDS arrangement, shown on Figure 4.2, Appendix A includes drainage to mitigate the groundwater flood risk, a series of filtration trenches to drain and attenuate surface water runoff, prior to discharges draining through a wetland to receive treatment.

C.5.3 SuDS Performance

The proposed scheme has been modelled within the Microdrainage WinDes software.

The overall surface water attenuation requirements for the site are ~ 220m³, which can be incorporated into the proposed development utilising a variety of SuDS methods.

2 CIRIA 697 ‘The SUDS manual’
Appendix 18A – Transport Assessment
Tyrone Cavan Interconnector - Transport Assessment
Tyrone Cavan Interconnector - Transport Assessment

<table>
<thead>
<tr>
<th>Rev No</th>
<th>Comments</th>
<th>Checked by</th>
<th>Approved by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Final Issue</td>
<td>TJR</td>
<td>TJR</td>
<td>22.05.13</td>
</tr>
</tbody>
</table>

Telephone: 028 9060 7200 Website: http://www.aecom.com

Job No 60032220 Reference Transport Assessment Date Created May 2013

This document is confidential and the copyright of AECOM Limited. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.
Table of Contents

1. **Introduction** ... 1
 1.1 Background ... 1
 1.2 Structure of Report ... 1
 1.3 Site Location ... 1
 1.4 Policy Context .. 2
 1.4.1 Planning Policy Statement 3: Access, Movement and Parking ... 2
 1.4.2 Planning Policy Statement 13: Transportation and Landuse ... 2
 1.4.3 Development Control Advice Note 15: Vehicular Access Standards .. 3
 1.4.4 Transport Assessment Guidelines for Development Proposals in Northern Ireland 3
 1.4.5 DMRB TD42/95 Geometric Design of Major/Minor Priority Junctions ... 3
 1.4.6 DMRB TD 41/95 Vehicular Access to All-Purpose Trunk Roads .. 3
 1.4.7 Traffic Signs Manual Chapter 8 Traffic Safety Measures and Signs for Road Works and Temporary Situations .. 3

2. **Assessing the Travel Characteristics of the Site** .. 5
 2.1 Introduction .. 5
 2.2 Development Proposals ... 5
 2.2.1 Turleenan Substation ... 5
 2.2.2 Overhead Line and Towers .. 5
 2.3 Depot and Supplier Details .. 6
 2.4 Accessibility of the Development Site ... 6
 2.4.1 Site Visits ... 6
 2.4.2 Existing Road Network ... 7
 2.4.3 Traffic Management ... 8
 2.4.4 Baseline Traffic Conditions ... 10
 2.5 Estimating the Travel Generated and Modal Split .. 12
 2.5.1 Turleenan Substation ... 12
 2.6 Overhead Lines and Towers Traffic Generation ... 13

3. **Influencing Travel to the Proposed Development** ... 18
 3.2 Location .. 18
 3.3 Scale ... 18
 3.4 Layout and Design of the Development ... 18
 3.5 Promoting Access on Foot .. 18
 3.6 Promoting Access on Bicycle ... 18
 3.7 Promoting Public Transport Access .. 19
 3.8 Managing Car Use and Parking .. 19
 3.8.1 Traffic Management ... 19
 3.8.2 Parking .. 19
 3.8.3 Traffic Impacts ... 19
 3.9 Committed Developments .. 19
 3.10 Summary ... 20

4. **Appraising and Mitigating Impact** .. 22
 4.1 Introduction ... 22
 4.2 Accessibility and Integration Impacts with the Local Community ... 22
 4.2.1 Access to Public Transport System ... 22
 4.2.2 Access to Local Area .. 22
 4.2.3 Community Severance .. 22
 4.2.4 Integration ... 22
 4.3 Safety and Security Impacts .. 22
 4.4 Environmental Impacts .. 24
 4.5 Highway and Traffic Impacts ... 24
 4.5.1 Haul Routes .. 24
 4.6 Construction Management .. 24
 4.7 Calculation of Traffic Impacts .. 24
5 Summary and Conclusions .. 41
 5.1 Key Points ... 41

Annex 1 – Overhead Line and Towers Access Summary
Annex 2 - Determination of Peak Hour Calculations
Annex 3 - Overhead Lines and Towers Traffic Generation
Annex 4 - Overhead Lines and Towers Traffic Impacts
Annex 5 - Technical Note on Sightline Requirements for Turleenan Substation Accesses
Annex 6 – CRF Calculations
Annex 7 - 12 Hour Traffic Profiles for Roads with more than 10% Traffic Impacts
Annex 8 – Haul Routes
Annex 9 – Overhead Line and Towers Access Assessment & AutoTracks of Accesses Requiring No Mitigation
Annex 10 – Proposed Mitigation/Enhancement Measures
Annex 11 - Construction Traffic Management Plan

Figure 1 – Development Location
Figure 2 – Turleenan Substation Temporary Access
Figure 3 – Turleenan Substation Permanent Access
Figure 4 - Depot at Carn Industrial Estate Location
Figure 5 - Location of AECOM ATC Surveys
Figure 6 - Location of Roads Service Permanent Counters
Figure 7 – 2008-2010 Collision History Within Study Area
1 Introduction
1 Introduction

1.1 Background
Northern Ireland Electricity (NIE) is seeking consent from the Northern Ireland Department of the Environment (DOE) for a 400,000 volt (400kV) overhead transmission line in Counties Tyrone and Armagh and an ancillary 275/400kV substation at Turleenan townland, near Moy, County Tyrone.

The scheme consists of three elements:
- The construction of 102 towers and tower bases;
- The installation of approximately 34km of 400kV overhead line; and
- Associated substation at Turleenan (including 2 additional 275kV towers).

Under Schedule 1 Category 20 of the EIA regulations, the Proposed Development required an Environmental Impact Assessment (EIA). This was undertaken and an Environmental Statement (ES), produced in 2009, and Addenda, reported the findings of the EIA and thus informing the DOE, statutory consultees, the public and interested parties about the likely effects of the Proposed Development on the surrounding environment.

At a meeting with Roads Service and Planning Service on 10 January 2013, Roads Service requested that a separate Transport Assessment (TA) report be produced, with the salient points of the TA included as a chapter within the Environmental Statement. This Transport Assessment provides a detailed overview of the current transport issues within the area, the assessment of the proposed construction accesses and traffic impact assessment and identification of appropriate measures to minimise impacts.

1.2 Structure of Report
Taking account of the Planning Service document, ‘Transport Assessment Guidelines for Development Proposals in Northern Ireland’, published 9 November 2006, the Transport Assessment is to be undertaken in the following stages:

1) Assessing the Travel Characteristics of the Site (Section 2 of this TA);
2) Influencing Travel to the Proposed Development (Section 3); and
3) Appraising and Mitigating Impacts (Section 4).

These stages consider the following:
- Existing situation;
- Development Proposals;
- Forecast Traffic;
- Highway Impact;
- Road Safety;
- Parking Provision;
- Public Transport; and
- Pedestrians, Cyclists and People with Disabilities.

1.3 Site Location
The Proposed Development consists of a new substation outside Moy, County Tyrone, in the townland of Turleenan and the construction of approximately 34km of 400kv overhead line circuit from the source substation to a border crossing between the townlands of Doohat or Crossreach, County Armagh and Lemgare, County Monaghan, where it will tie into the future EirGrid network. The overhead line will continue on in the Republic of Ireland with all further towers to be proposed by EirGrid for placement within that jurisdiction. However, owing to geographic border definitions in the immediate area of the border crossing, there will be a 200m of line oversail in the Northern Ireland townland of Crossbane which forms part of the Proposed Development.
The location of the substation is permanent; however temporary access is required at over 100 locations in order to facilitate the construction of towers that will carry the overhead line.

For the purpose of this Transport Assessment the study area relates to the roads where temporary and permanent accesses are to be located and also haul routes that will be used for the transportation of construction and maintenance traffic. This consists of a mixture of A, B and C class roads, rural roads and unclassified roads.

The A Class roads in the locality are: the A28 which runs between Augher, Aughnacloy, and Armagh; the A29 which runs between Dungannon, Moy, Armagh and Newtownhamilton; and the A3 which runs between Armagh and the border near Monaghan.

The B Class roads in the locality are; the B3 which runs from Tandragee to the border; the B115 which runs between Armagh and the B45; the B106 which runs between Benburb, Moy and the M1; the B128 which runs between Blackwatertown, Benburb and Aughnacloy; and the B132 which runs from Keady to the A3.

The only C class road in the study area is Derrynoose Road which is a good quality road providing connection between the B3 and the L3530 across the border (near Coolartragh).

The majority of roads within the locality are unclassified rural roads. The unclassified roads range in width and traffic flow, with some just providing a ‘spur’ off the adjoining road for access to the houses located along it.

Figure 1 highlights the Proposed Development within the context of the surrounding road network.

1.4 Policy Context
For the purposes of this Transport Assessment a number of planning advice and documents have been referred to and these include:

- Planning Policy Statement 13 (PPS 13) : Transportation and Landuse, Department of Regional Development, 2005;
- Development Control Advice Note 15 (DCAN 15) : Vehicular Access Standards, Department of the Environment Planning Service & Roads Service Development Control, August 1999;
- Transport Assessment Guidelines for Development Proposals in Northern Ireland, Department of Regional Development & Department of the Environment, 9 November 2006;
- The Design Manual for Roads and Bridges (DMRB) TD42/95 Geometric Design of Major/Minor Priority Junctions; and
- DMRB TD 41/95 Vehicular Access to All-Purpose Trunk Roads.

1.4.1 Planning Policy Statement 3 : Access, Movement and Parking
PPS 3 sets out the Departments planning policies for vehicular and pedestrian access, transport assessment, the protection of transport routes and parking. It forms an important element in the integration of land use planning. It embodies the Government’s commitments to the provision of a modern, safe and sustainable transport system, the improvement of mobility for those who are socially excluded or whose mobility is impaired, the promotion of healthier living and improved road safety.

1.4.2 Planning Policy Statement 13 : Transportation and Landuse
The Department for Regional Development (DRD) formulated Shaping our Future: the Regional Development Strategy for Northern Ireland 2025 (RDS) in September 2001. Planning Policy Statement 13 has been prepared to assist in the implementation of the RDS. It will guide the integration of transportation and land use, particularly through the preparation of development plans and transport plans. PPS 13 replaces Strategic Policy 11 and Policy PSU 6 of “A Planning strategy for Rural Northern Ireland”. PPS13 flows directly from the vision, spatial strategy and strategic planning guidelines contained in the RDS.
1.4.3 Development Control Advice Note 15 : Vehicular Access Standards
Development Control Advice Note 15 (DCAN 15) sets out the advice relating to vehicular accesses. That advice set out in DCAN 15 applies to new private accesses and new development access roads joining the public road.

1.4.4 Transport Assessment Guidelines for Development Proposals in Northern Ireland
These guidelines assist in the preparation of Transport Assessments for development proposals in Northern Ireland, the policy context for which is set out in Planning Policy Statement 13: Transportation and Land Use and Planning Policy Statement 3: Access, Movement and Parking.

The purpose of Transport Assessment is to provide enough information for DoE and DRD to understand how the Proposed Development is likely to function in transport terms. Assessing the transport impacts in a systematic manner contributes towards understanding how more sustainable travel patterns might be achieved through changing travel behaviour. Transport Assessment also subsumes the former process of Traffic Impact Assessment.

1.4.5 DMRB TD42/95 Geometric Design of Major/Minor Priority Junctions
This document advises on the design of major/minor priority junction, including the siting of such junctions. Recommendations are given on the geometric design of the important elements of the major/minor priority junction, and the way in which the individual components can be brought together to produce a good overall design

1.4.6 DMRB TD 41/95 Vehicular Access to All-Purpose Trunk Roads
This document sets outs standards for the geometric layout of connections for direct vehicular access to all-purpose trunk roads where the numbers using the connection are below 500 AADT. The Standard describes the effects of vehicular access to Trunk Roads and outlines the results of recent research on the safety implication.

1.4.7 Traffic Signs Manual Chapter 8 Traffic Safety Measures and Signs for Road Works and Temporary Situations
Chapter 8 of the Manual sets out the effects of road works or temporary closures on all kinds of road user and recommends steps that should be taken to minimise these effects.
2 Assessing the Travel Characteristics of the Site
2 Assessing the Travel Characteristics of the Site

2.1 Introduction
This section of the Transport Assessment provides a description of how the transport aspects of the Proposed Development will function, including:

- Development proposals;
- Accessibility of the site; and,
- Estimation of the travel generated and the likely modal split.

2.2 Development Proposals
The development proposals to be assessed in this report, relate to two aspects. Firstly, the construction of a substation at Turleenan (which includes the removal of one existing 275kV tower and replacement with two new 275kV towers). This is a permanent development with a permanent access. Secondly the construction of the overhead line and towers. Whilst the towers and overhead line are permanent features their access requirements for the purposes of construction are temporary.

2.2.1 Turleenan Substation
The substation will consist of two buildings, a control building and a Gas Insulated Switchgear (GIS) building and an open air 400kV switchyard (AIS). The positioning of the proposed substation compound has been aligned with NIE’s existing 275kV overhead line and will allow connection to the proposed 400kV overhead line. The development will require one existing 275kV intermediate suspension tower in the vicinity of the substation to be removed and two new 275kV towers to be constructed to provide connection to the proposed substation.

The proposed substation is located in the Turleenan townland, near Moy, County Tyrone with access via Trewmount Road (B106), as shown in Figure 1.

Construction of the substation is estimated to take a period of three years, with a start date of 2015 and completion in 2017. Once completed it will be maintained throughout its life and will become permanent as part of NIE’s major infrastructure. The development includes a total of six car parking spaces to facilitate staff parking when maintenance is required.

There is an existing dwelling (No. 152 Trewmount Road) located within the confines of the development site. The development proposals involve initially allowing the dwelling to remain during the construction phase (to be used as a site office), with a temporary access located to the northern edge of the site, see Figure 2. It should be noted that this access is located within the flood plain and therefore it is intended, once the majority of the construction work is completed, to demolish the dwelling and locate the permanent access to the site in this location, which is not in the flood plain. Figure 3 shows the proposed permanent access location.

2.2.2 Overhead Line and Towers
The overhead line and towers will include a total of 102 towers. The spacing, type of tower and the height vary depending on technical requirements, which relate primarily to topography. An ‘intermediate’ tower is used where the line route is straight. ‘Angle’ towers are used to accommodate bends/turns in the line route. Three types of angle towers are required in the Proposed Development: a 30 degree angle tower, a 60 degree angle tower and a 90 degree angle tower. In total the development includes:

- 66 No. intermediate towers;
- 14 No. 30 degree towers;
- 18 No. 60 degree towers; and
- 4 No. 90 degree towers.
During construction, once a sufficient number of sequential sections are completed, stringing of the conductor line can commence. Stringing is undertaken from angle tower to angle tower. During the stringing process it is sometimes necessary to ‘guard’ over roads and/or rivers to be crossed so that the line does not hit the road or water.

A total of 104 temporary accesses are to be used to construct the 102 proposed towers. The vast majority of these temporary accesses will use either existing field gates or laneways.

Annex 1 details the proposed access arrangements to each of the towers and separate stringing locations, including photos of the proposed access locations.

2.3 Depot and Supplier Details
It is intended to use NIE’s existing depot at Carn Industrial Estate, Craigavon, as the depot for the construction of the Proposed Development. The depot will be used to store construction vehicles and equipment. This includes all the steel required to build the towers. Materials for all of the construction phase (substation, overhead line and towers) will be stored at the existing NIE depot at Carn, Craigavon. Carn is NIE’s main regional depot in the southern half of Northern Ireland, consisting of Regional Office, Main Stores for Distribution, and the Distribution Control Centre for all of Northern Ireland. It is adjacent to the M12 Carn roundabout and 15 miles (24km) from the proposed Turleenan Substation which will link the proposed new 400kV Line to the existing Network.

With regard to stone and concrete, which unlike other construction equipment stored at Carn will go directly from the source to the constructions sites, will be sourced from suppliers through the contractor. Licensed landfill sites will be used to dispose of waste spoil from the construction. There are a number of landfill sites in the area that can be used to dispose of the waste and spoil material. These include for example Tullyvar Landfill Site, near Aughnacloy the Aughnagun Landfill Site near Mayobridge and the Lisbane Landfill Site near Tandragee.

These can all be immediately accessed via A and B routes. The Tullyvar site is to the north of the study area and can be accessed via the A29 and then onto the A4 and A5 routes. The Aughnagun Landfill Site is to the south of the study area and can be accessed via the A29 as far as Armagh and then the A28 to Newry and then on to the B6 and B7 on the eastern side of Newry. The Lisbane Landfill Site near Tandragee is to the east of the study area and is accessed via the A29 and A51.

For the purposes of this aspect of the Transport Assessment all these routes are suitable for the types and volumes of traffic generated by the Proposed Development.

2.4 Accessibility of the Development Site
Within this section of the Transport Assessment, accessibility of the development site by the different modes including walking and cycling, public transport and car access is normally considered (note there are two routes on the National Cycle Network routes 91 and 95 which run thorough the study area). However, due to the unique nature of the Proposed Development whereby almost the entirety of traffic generated by the development will be during the construction phase, vehicular access only has been considered. Construction workers will avail of minibus/works type vehicles to access the tower locations.

2.4.1 Site Visits
A number of site visits have been undertaken during 2012 and 2013 at different times of the year and involved driving the local road network in order to ascertain any issues in terms of access points, road conditions and general site locations. This included a series of road width measurements at the potential site access locations. It is noted that given the rural nature of the study area that accessibility by foot, cycle and public transport is limited. Annex 1 shows a sample of the locations visited.
2.4.2 Existing Road Network
The study area covers approximately 34km of road network between the Tyrone and Cavan county border as illustrated in Figure 1. This consists of a mixture of A and B class roads, and C Class and Unclassified Roads(C/UC).

2.4.2.1 A Class Roads
The A Class roads in the locality are:
- A26 Killylea Road – runs between Armagh and Caledon;
- A29 Moy Road - runs between Dungannon, Moy, Armagh and Newtownhamilton; and
- A3 Monaghan Road - runs between Armagh and the border near Monaghan.

The above roads have central delineating white lines, have high speeds and relatively high traffic flows.

2.4.2.2 B Class Roads
The B Class roads in the locality are:
- B3 Fergort Road - runs from Keady o the border;
- B115 Battleford Road - runs between Eglish and Armagh;
- B106 Trewmount Road / Benburb Road - runs between Benburb, Moy and the M1;
- B103 Clonfeacle Road – runs between Benburb and Armagh Road A29; and
- B132 Maddan Road - runs from Keady to the A3 at Armagh.

The above roads have central delineating white lines, relatively high speeds and traffic flows.

2.4.2.3 C Class Roads
The C Class roads in the locality are:
- Derrynoose Road – connects the B3 Fergort Road with the L3530 across the border.

The above road has central delineating white lines and is approximately 6 metres wide.

2.4.2.4 Unclassified Roads
The following unclassified roads in the locality are more than 4 metres in width:
- Drumhillery Road;
- Hanslough Road;
- Brootally Road;
- Cormeen Road;
- Doohat Road;
- Artasooly Road;
- Tullysaran Road;
- Tullyneagh Road;
- Gorestown Road; and
- Culkeeran Road

The above roads do not have central delineating white lines however they have sufficient width for two vehicles to pass.

The following unclassified roads in the locality are between 3 and 4 metres in width:
- Bracknagh Road;
- Crossbane Road;
- Dernalea Road;
- Derrygally Way;
- Drumlee Road;
- Glassdrummond Road;
- Navan Fort Road;
- Rhone Road;
- Tullydowey Road;
- Tullyneagh Road;
- Gorestown Road;
- Culkeeran Road;
- Unclassified road off Killylea Road serving AT57, AT58, AT59 and AT60;
- Unclassified road off Tullycallidy Road serving AT62SL and AT63; and
- Unclassified road named Monaghan Road off Brootally Road.

The above roads do not have central delineating white lines, two cars should be able to pass each other, but wider vehicles would need to use informal passing opportunities along the roads to pass each other when this occurs.

The following unclassified roads in the locality are less than 3 metres in width:
- Ballyhoy Road;
- Cavanagarvan Road;
- Culrevog Road;
- Listrakelt Road;
- Major Lane;
- Sheetrim Road; and
- Tivnacree Road.

The above roads do not have central delineating white lines and are too narrow to allow two cars to pass each other. Informal passing opportunities along the road exist and are utilised by all traffic i.e. all vehicle types. The existing vehicle types are comparable to those used in the Proposed Development.

2.4.3 Traffic Management

The sign shown in photograph 1 was erected in 2008 by Roads Service Traffic Management Section to advise road users that Tullydowey Road was not suitable for heavy goods vehicles. There are no weak structures on this road and the sign is advisory, not mandatory.

The sign shown in photograph 2 on the Culrevog Road was not erected by Roads Service Traffic Management Section.
Photograph 1 - Restriction Advisory Sign – Tullydowey Road

Photograph 2 - Restriction Advisory Sign – Culrevog Road
2.4.4 Baseline Traffic Conditions

2.4.4.1 Traffic Census Data

The Roads Service Traffic and Travel Information 2006 – 2010 Annual Traffic Census has been consulted for relevant data.

Traffic census data is currently not available for 2011-2013 as it has not yet been published. Historical traffic flow data for sites on the A and B-class roads in the vicinity have been examined as shown in Table 1 below. Further to this Table 2 shows both the total percentage growth and the percentage growth per annum between 2006 and 2010. The approximate locations of the counters are shown in Figure 4.

Table 1 - Traffic Census Data 2006-2009

<table>
<thead>
<tr>
<th>REF NO.</th>
<th>LOCATION</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AADT</td>
<td>%</td>
<td>AADT</td>
<td>%</td>
<td>AADT</td>
</tr>
<tr>
<td>417</td>
<td>A29 Keady Road</td>
<td>6,260</td>
<td>9.0</td>
<td>5,790</td>
<td>9.15</td>
<td>5,760</td>
</tr>
<tr>
<td>424</td>
<td>A3 Monaghan Road</td>
<td>6,660</td>
<td>11.0</td>
<td>6,880</td>
<td>11.06</td>
<td>6,580</td>
</tr>
<tr>
<td>428</td>
<td>B3 Derrynoose Road</td>
<td>5,520</td>
<td>7.0</td>
<td>5,290</td>
<td>6.62</td>
<td>5,290</td>
</tr>
<tr>
<td>440*</td>
<td>A29 Moy Road</td>
<td>-</td>
<td>-</td>
<td>10,580</td>
<td>11.1</td>
<td>10,500</td>
</tr>
<tr>
<td>442*</td>
<td>A3 Monaghan Road</td>
<td>-</td>
<td>-</td>
<td>5,010</td>
<td>13.41</td>
<td>4,580</td>
</tr>
<tr>
<td>606</td>
<td>A29 Armagh Road</td>
<td>10,750</td>
<td>9.0</td>
<td>10,860</td>
<td>9.12</td>
<td>10,550</td>
</tr>
</tbody>
</table>

* It should be noted that permanent Roads Service counters were not in places for either 440 or 442 in 2006

Table 1 shows that annual traffic levels are decreasing annually and therefore are currently undergoing negative growth.

2.4.4.2 Surveyed Traffic Count Data

Base traffic flow data was obtained from a series of Automated Traffic Counters (ATCs) installed within the study area in May 2012 and January 2013. The surveys took place at 42 locations within the area. Figure 5 details the locations of the ATC surveys. The results of these surveys are detailed in Table 2.
Table 2 - ATC Survey Results (May 2012 and January 2013)

<table>
<thead>
<tr>
<th>SITE REF.</th>
<th>ROAD NAME</th>
<th>ROAD CLASSIFICATION</th>
<th>WEEKDAY DAILY TRAFFIC</th>
<th>% HGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td>Trewmount Road</td>
<td>B106</td>
<td>3,672</td>
<td>4%</td>
</tr>
<tr>
<td>Site 2</td>
<td>Moy Road</td>
<td>A29</td>
<td>8,522</td>
<td>8%</td>
</tr>
<tr>
<td>Site 3</td>
<td>Culverog Road</td>
<td>Unclassified</td>
<td>65</td>
<td>2%</td>
</tr>
<tr>
<td>Site 4</td>
<td>Benburb Road</td>
<td>B106</td>
<td>813</td>
<td>3%</td>
</tr>
<tr>
<td>Site 5</td>
<td>Confeacle Road</td>
<td>B109</td>
<td>1,846</td>
<td>5%</td>
</tr>
<tr>
<td>Site 6</td>
<td>Artasooly Road</td>
<td>Unclassified</td>
<td>490</td>
<td>5%</td>
</tr>
<tr>
<td>Site 7</td>
<td>Battleford Road</td>
<td>B115</td>
<td>2,432</td>
<td>5%</td>
</tr>
<tr>
<td>Site 8</td>
<td>Killylea Road</td>
<td>A28</td>
<td>4,721</td>
<td>7%</td>
</tr>
<tr>
<td>Site 9</td>
<td>Brotally Road</td>
<td>Unclassified</td>
<td>180</td>
<td>9%</td>
</tr>
<tr>
<td>Site 10</td>
<td>Dernalea Road</td>
<td>Unclassified</td>
<td>210</td>
<td>5%</td>
</tr>
<tr>
<td>Site 11</td>
<td>Drumhillery Road</td>
<td>Unclassified</td>
<td>423</td>
<td>6%</td>
</tr>
<tr>
<td>Site 12</td>
<td>Fergort Road</td>
<td>B3</td>
<td>642</td>
<td>6%</td>
</tr>
<tr>
<td>Site 13</td>
<td>Listrakelt Road</td>
<td>Unclassified</td>
<td>177</td>
<td>5%</td>
</tr>
<tr>
<td>Site 14</td>
<td>Monaghan Road</td>
<td>A3</td>
<td>6,180</td>
<td>6%</td>
</tr>
<tr>
<td>Site 15</td>
<td>Madden Road</td>
<td>B132</td>
<td>1,145</td>
<td>6%</td>
</tr>
<tr>
<td>Site 16</td>
<td>Carn Industrial Estate</td>
<td>B2</td>
<td>663</td>
<td>7%</td>
</tr>
<tr>
<td>Site 17</td>
<td>Derrygally Road</td>
<td>Unclassified</td>
<td>133</td>
<td>14%</td>
</tr>
<tr>
<td>Site 18</td>
<td>Major Lane</td>
<td>Unclassified</td>
<td>33</td>
<td>21%</td>
</tr>
<tr>
<td>Site 19</td>
<td>Culkeeran Road</td>
<td>Unclassified</td>
<td>149</td>
<td>17%</td>
</tr>
<tr>
<td>Site 20</td>
<td>Rhone Road</td>
<td>Unclassified</td>
<td>39</td>
<td>13%</td>
</tr>
<tr>
<td>Site 21</td>
<td>Gorestown Road</td>
<td>Unclassified</td>
<td>668</td>
<td>13%</td>
</tr>
<tr>
<td>Site 22</td>
<td>Drumlee Road</td>
<td>Unclassified</td>
<td>230</td>
<td>20%</td>
</tr>
<tr>
<td>Site 23</td>
<td>Tullydowey Road</td>
<td>Unclassified</td>
<td>51</td>
<td>18%</td>
</tr>
<tr>
<td>Site 24</td>
<td>Tullysaran Road</td>
<td>Unclassified</td>
<td>213</td>
<td>16%</td>
</tr>
<tr>
<td>Site 25</td>
<td>Tullnagham Road</td>
<td>Unclassified</td>
<td>282</td>
<td>15%</td>
</tr>
<tr>
<td>Site 26</td>
<td>Battleford Road</td>
<td>B115</td>
<td>1,926</td>
<td>14%</td>
</tr>
<tr>
<td>Site 27</td>
<td>Bracknagh Road</td>
<td>Unclassified</td>
<td>45</td>
<td>20%</td>
</tr>
<tr>
<td>Site 28</td>
<td>Navan Fort Road</td>
<td>Unclassified</td>
<td>56</td>
<td>25%</td>
</tr>
<tr>
<td>Site 29</td>
<td>Cormeen Road</td>
<td>Unclassified</td>
<td>289</td>
<td>22%</td>
</tr>
<tr>
<td>Site 30</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>71</td>
<td>4%</td>
</tr>
<tr>
<td>Site 31</td>
<td>Tulcallidy Road</td>
<td>Unclassified</td>
<td>41</td>
<td>22%</td>
</tr>
<tr>
<td>Site 32</td>
<td>Ballyhoy Road</td>
<td>Unclassified</td>
<td>25</td>
<td>24%</td>
</tr>
<tr>
<td>Site 33</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>90</td>
<td>3%</td>
</tr>
<tr>
<td>Site 34</td>
<td>Dernalea Road</td>
<td>Unclassified</td>
<td>26</td>
<td>4%</td>
</tr>
<tr>
<td>Site 35</td>
<td>Hanslough Road</td>
<td>Unclassified</td>
<td>490</td>
<td>10%</td>
</tr>
<tr>
<td>Site 36</td>
<td>Cavanagarvan Road</td>
<td>Unclassified</td>
<td>66</td>
<td>6%</td>
</tr>
<tr>
<td>Site 37</td>
<td>Sheetrin Road</td>
<td>Unclassified</td>
<td>27</td>
<td>4%</td>
</tr>
<tr>
<td>Site 38</td>
<td>Glassdrummond Road</td>
<td>Unclassified</td>
<td>90</td>
<td>17%</td>
</tr>
<tr>
<td>Site 39</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>34</td>
<td>3%</td>
</tr>
<tr>
<td>Site 40</td>
<td>Derrynoose Road</td>
<td>C Road</td>
<td>678</td>
<td>19%</td>
</tr>
<tr>
<td>Site 41</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>12</td>
<td>8%</td>
</tr>
<tr>
<td>Site 42</td>
<td>Crossbaine Road</td>
<td>Unclassified</td>
<td>54</td>
<td>4%</td>
</tr>
</tbody>
</table>
The total number of vehicles in any given hour for each of the ATC surveyed sites were used to determine overall peak hours for the study assessment period and the AM peak hour was found to be 08:00-09:00 and the PM peak hour 17:00-18:00. The peak hour calculations are shown in Annex 2.

With regard to the Saturday flows for the majority of survey sites, the Saturday flows are lower than the daily weekday flows and therefore the weekday is considered to be the worst case and a Saturday assessment is not required. Work will not occur on Sundays, so a Sunday assessment is also not required.

2.5 Estimating the Travel Generated and Modal Split

As described previously, the nature of the Proposed Development means that almost all the travel generated by the Proposed Development will be during the construction period and the majority of this will therefore be vehicular traffic and little or no travel by walk, cycle or public transport. The following sub-sections detail the traffic generated by the sub-station and overhead line and towers respectively.

2.5.1 Turleenan Substation

There are two aspects to the traffic generation for the development as follows:

- **Construction Phase Traffic** – This traffic would access the development site through the proposed temporary access during 2015-2017 and comprise of only construction traffic, see detailed description in 2.5.1.1.
- **Operational Traffic** – This traffic would access the proposed permanent access. The traffic would comprise of the vehicles associated with maintaining and running the substation, see detailed description in 2.5.1.2.

2.5.1.1 Construction Phase Traffic

As stated previously the construction phase is anticipated to start in 2015 for a period of 3 years until completion in 2017, and can be considered in the following seven segments:

1) Site Entrance
2) Access Road
3) Site Clearance, Landscaping and Preparation of Bund Construction
4) Install Drainage and Ducting
5) Construction of Roads and Bases Within Site
6) Installation of Equipment and Construction of Buildings
7) Completion of Access Road and Entrance, Including Final Surfacing

Summary

The substation is anticipated to be completed and operational in 2017.

2.5.1.2 Operational Traffic

Operational traffic would use the permanent access to the site from year 2017 and include the following:

- Operational traffic associated with the control building would be a maximum of 2 vehicles per day;
- Maintenance of the facility would be undertaken over a period of a 7 day period per calendar year and include 3 or 4 vehicles per day entering and exiting the site per day;
- An oil tanker would service the site every 6 months; and
- Estimated that once a year an excavator would need to access the site to undertake maintenance work on the SuDS pond.

2.5.1.3 Working Hours

During construction the site working hours will be restricted to 07:00 – 19:00 or hours of daylight Monday to Friday. Saturday working hours will be restricted to 07:00-13:00 or hours of daylight. No Sunday or night working except for emergency works (pumping of excavations, not construction).
2.5.1.4 Summary of Traffic Generation

Table 3 summarises the traffic generations for construction and operational traffic for weekday AM and PM peak hours and also daily flows. The traffic figures are based on a reasonable worst case i.e. the day on which the maximum daily traffic will be generated during construction and based on a 12 hour working day. A 12 hour working day represents the majority of the working year and therefore using this scenario is considered to provide a robust assessment.

Construction traffic volumes have been based on a maximum daily flow of 200 vehicles, and peak hour calculation on the basis of a 12 hour working day relating to 16 vehicles per hour. i.e. 8 in and 8 out.

Operational traffic flows are on the basis of the maximum daily traffic within the year i.e. when operational and maintenance traffic occurs at the same time, and includes 1 operational vehicle arriving and departing within the peak hours. For the daily traffic generation it has been assumed that 4 maintenance vehicles would enter and exit the site in addition to the one operational vehicle entering and exiting the site.

Table 3 – Turleenan Substation Traffic Generation During Construction

<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>2015-2017 CONSTRUCTION TRAFFIC (VEHS)</th>
<th>2017 OPERATIONAL TRAFFIC (VEHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Peak Hour (08:00-09:00)</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>PM Peak Hour (17:00-18:00)</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Daily</td>
<td>200</td>
<td>10</td>
</tr>
</tbody>
</table>

2.6 Overhead Lines and Towers Traffic Generation

The majority of the traffic generated by this aspect of the development is associated with the construction aspect through temporary accesses, once completed the traffic generations are negligible, as any future maintenance of the towers will require only minimal access (no less than once every two years, except in emergencies), either on foot or by 4x4 type vehicle via existing field gates or laneways.

The following details the construction methodology from which the traffic generations have been derived.

2.6.1.1 Construction Phasing

Five stages of work have been identified, as follows:

- Stage 1: Access Work – Initial site clearance, installation of temporary tracks and delivery of plant and equipment;
- Stage 2: Tower Foundations – Excavation of foundations, concrete infilling, backfilling of excavated materials;
- Stage 3: Steel Work – Delivery and construction of steel towers;
- Stage 4: Conductor/Insulator Installation – Installation of conductor and insulator through tensioners and pullers; and
- Stage 5: Reinstatement of Land - Once all works are complete, the access route and the construction areas around the tower are restored to their original condition.

Stage 1: Access Work

Stage 1 entails the preparation of the site for tower construction. Temporary tracks will be required to accommodate the heavier vehicles associated with the later phases. A total of 53 accesses will require stone. Generally, temporary tracks are constructed using 200mm stone placed directly on top of ground and compacted. Other site preparation works include such things as removal of hedges and fences and erection of temporary fencing.

Stage 2: Tower Foundations

Key activities for Stage 2 are the excavation of the foundations for the tower legs and the subsequent infilling of concrete. The volume of concrete required for the foundations depends on the tower type i.e. whether intermediate, 30 degree, 60 degree or 90 degree and also the ground conditions. Although some of the excavated soil will be backfilled and compressed, there will be a
volume of waste spoil which will have to be removed from site. Depending on the ground conditions, temporary stoned working areas to construct the tower bases may be required to accommodate the heavier vehicles.

Stage 3: Steel Work
Within Stage 3 the steel for the tower is delivered and constructed on site. Only steel to be used that day would be delivered to the site in the morning, to avoid excess materials being located on site overnight. A Derrick Pole and Telescopic Loader would be used to assemble the tower.

Stage 4: Conductor / Insulator Installation
Stage 4 involves the stringing of the overhead conductor / insulator lines between towers, usually in sections of 10 consecutive towers. Overhead lines originate from tensioners on one side of the tower section and are fed through via pullers on the other side of the section. A pilot wire is pulled across the section via a heavy towing tractor to connect the tensioners.

Stage 5: Reinstatement of Land
Once all works are complete, the access route and the construction areas around the tower will be restored to their original condition. This will have the same levels of staff and vehicles as Stage 1.

Summary
Table 4 overleaf summarises the construction phases and the associated vehicle types, staff requirements and number of days. It should be noted that Stages 1-5 described above relate to the physical construction of the towers through the designated access tracks. Further access is also required to complete the stringing of the overhead line, through further ‘Stringing Location’ accesses and ‘Guarding location’ accesses (see 2.6.1.4 for more detail regarding traffic generations).
<table>
<thead>
<tr>
<th>STAGE</th>
<th>DESCRIPTION</th>
<th>ACTIVITIES</th>
<th>VEHICLE TYPES REQUIRING ACCESS</th>
<th>NO. OF STAFF</th>
<th>TYPICAL WORK DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOWER TYPE</td>
</tr>
<tr>
<td>1</td>
<td>Access Work</td>
<td>Delivery of plant and equipment</td>
<td>Fastrac/tractor + low loader trailer carrying dumper / fencing equipment / excavator / rock breaker (if required)</td>
<td>3</td>
<td>Inter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site clearance</td>
<td>Tipper Lorry (22 tonnes) – only when stone required</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation of temporary tracks (if required)</td>
<td>Transit type van</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site clearance</td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>Tower Foundations</td>
<td>Delivery of plant and equipment</td>
<td>Tractor and trailer</td>
<td>6</td>
<td>Inter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removal of surplus material</td>
<td>Concrete lorry (8 cubic metres)</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concrete filling of foundations</td>
<td>Transit type van</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>Steel Work</td>
<td>Delivery of plant and equipment</td>
<td>Flatbed lorry (26 tonnes)</td>
<td>8</td>
<td>Inter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delivery of steel</td>
<td>Tractor and trailer</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction of tower</td>
<td>Fastrac/tractor + low loader trailer carrying Derrick Pole / Telescopic Loader</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transit type van</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Conductor/ Insulator Installation</td>
<td>Delivery of plant and equipment</td>
<td>Fastrac/tractor + low loader trailer carrying puller tensioners / conductor drums / stringing wheels / compressor and heads / quad bikes</td>
<td>15</td>
<td>Inter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stringing of line</td>
<td>Tractor and trailer</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removal of spent drums</td>
<td>Transit type van</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Reinstatement of Land</td>
<td>Delivery of plant and equipment</td>
<td>Fastrac/tractor + low loader trailer carrying dumper / fencing equipment / mini-digger</td>
<td>3</td>
<td>Inter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site clearance</td>
<td>Tractor and trailer</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removal of temporary tracks (if required)</td>
<td>Transit type van</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>
2.6.1.2 Construction Schedule / Period
It is estimated that the construction period in any particular location along the overhead line route will be in the order of 4 – 6 months. This is because all of the Stages of the construction can not follow immediately on from one another an example being that once Stage 2 is completed i.e. the concrete poured for the base, the steel cannot be erected until the concrete has set adequately, which is estimated to take at least 4 weeks. Furthermore once the steel work is completed in Stage 3, Stage 4 cannot follow directly after unless enough of the towers have been constructed to allow the stringing of the conductor to take place. In summary the traffic generated by each of the access points will occur for short periods of time with breaks between all Stages except Stages 1 and 2.

NIE intends to instruct the contractor to provide two construction teams, at this point estimated to complete towers 1-51 and 52-102 respectively.

2.6.1.3 Working Hours
During construction the site working hours will be restricted to 07:00 – 19:00 or hours of daylight Monday to Friday. Saturday working hours will be restricted to 07:00-13:00 or hours of daylight. No Sunday or night working except for emergency works (pumping of excavations, not construction).

2.6.1.4 Summary of Traffic Generation

Tower Accesses
NIE, in association with ESBI have undertaken a study of the prevailing ground conditions in the proposed tower locations to all best estimates of the requirements for stone, spoil disposal and concrete. Annex 3 includes details of each of the access points, the tower types and the estimates of stone, spoil disposal and concrete. This has allowed the daily traffic generations to be calculated.

As identified earlier, the peak hours for background traffic are 08:00-09:00 and 17:00-18:00. Development traffic generations for these periods have been calculated based on the peak daily traffic for the particular access with flows apart from staff arrivals and departures (assumed to arrive before and depart after the designated peak hour times) split uniformly over a 12 hour working day. The traffic figures are based on a reasonable worst case i.e. the day on which the maximum daily traffic will be generated during construction and based on a 12 hour working day. A 12 hour working day represents the majority of the working year and therefore using this scenario is considered to provide a robust assessment. Although the working day hours can decrease in winter periods, as the traffic generations are based on the peak daily flow it is considered to represent a robust assessment of likely traffic flows.

The peak daily traffic generated by the proposed temporary accesses varies between 15 and 58 vehicles per day. Average daily traffic flows range between 6 and 26 vehicles per day. The total days used by the majority of accesses would be 15 construction days however, for the access track providing access to Towers 3, 4, 5 and 6 would be used for a period of 57 construction days.

Stringing Location Accesses
Stringing locations will be used for a maximum of 5 days and will have a maximum daily traffic flow of 20 vehicles per day.

Guarding Locations
Guarding locations will require access by 1 or 2 vehicles daily over a period of 5 days.
3 Influencing Travel to the Proposed Development
3 Influencing Travel to the Proposed Development

3.1 Introduction
The Transport Assessment guidelines, suggest that this section of the assessment details methods used by the Proposed Development to influence travel to the development. The nature of the development means that the majority of the trips generated by the development are associated with construction, with negligible trips once complete therefore the use of trips by cycling, walking and public transport modes is limited. The main permanent feature of the development proposals, i.e. the substation at Turleenan, is unmanned and will only have occasional requirements for access. Given the operational requirements of this Proposed Development there are limited opportunities to influence travel to the Proposed Development.

3.2 Location
The location of the development has been chosen based on the operational requirements of creating a 400kV overhead line and associated substation. However, as stated previously, the nature of the development means that the majority of the trips generated by the development are associated with construction, with negligible trips once complete therefore the use of more sustainable modes is unlikely. Furthermore in the case of the Proposed Development the positioning has been governed by existing electricity facilities i.e. the proposed substation compound has been aligned with NIE’s existing 275kV overhead line and will allow connection to the proposed 400kV overhead line. This will in turn provide connection to existing facilities in the Republic of Ireland.

Notwithstanding this, the substation which is the only aspect of the Proposed Development which requires regular access post construction, accesses directly onto Trewmount Road (B106).

3.3 Scale
The scale of the development can influence travel behaviour, but in this instance the scale is governed by existing electricity facilities it is providing a connection between. The size of the substation and number of towers required is directly related to this. However, the minimal nature of the traffic generation once completed, means that development scale does not influence travel behaviour, and therefore is not considered further in this assessment.

3.4 Layout and Design of the Development
With regard to temporary and permanent accesses proposed for the substation, these have been designed taking cognisance of appropriate guidance given their nature and location.

Facilities for the mobility impaired are not included within the design due to the nature of the proposal and its location.

3.5 Promoting Access on Foot
Due to the rural location of the sites and their type and function, the facilities for pedestrians are unlikely to influence travel to the sites and therefore they have not been considered further in this assessment.

3.6 Promoting Access on Bicycle
Existing dedicated facilities for cyclists are not present in the locality of the Proposed Development sites, and it is not proposed to provide any further facilities as part of the development proposals as they are unlikely to influence to the sites and therefore are not considered further in this assessment.
3.7 Promoting Public Transport Access
It is not considered that the development sites will give rise to the use of stage carriage bus services or use of rail services. It is anticipated that staff would travel to the sites primarily by private mini-bus / works vehicles.

3.8 Managing Car Use and Parking

3.8.1 Traffic Management
Vehicle movements associated with the construction of the development are likely to come from / go to a number of locations including the Carn depot, concrete suppliers, quarries and landfill sites. Haul routes for construction activities have been identified and are to be agreed with Roads Service and the appointed contractor as part of the construction traffic management plan (see Section 4.5.1 re further detail on haul routes). It is also proposed that the contractor will use temporary traffic management measures to minimise disruption to the road network. These measures will be required at a minority of tower access locations and then for certain types of deliveries only. The temporary traffic management measures will include single vehicle working and other associated measures extracted from Chapter 8 of the Traffic Signs Manual.

3.8.2 Parking
With regards to the substation, throughout the construction phase and also once operational, parking will not be permitted on the public roads or on the verges. All construction related vehicles will park within the confines of the construction site.

To help further minimise any parking, construction staff will be required to travel to/from the construction sites via mini-buses/ work vehicles.

With regard to the permanent substation, once operational the proposed substation will have a total of 6 no. parking spaces.

3.8.3 Traffic Impacts
The traffic impact analysis of the traffic flows generated by the Proposed Development is included within Section 4.8 of this report. The assessment has regard to the Institution of Highways and Transportation publication, ‘Guidelines for Traffic Impact Assessment’.

3.9 Committed Developments
Planning Service does not provide planning consultants with an indication of planning histories. Therefore, a search of planning applications was conducted within a 5km radius of the site through the third party search website Planning online (http://www.planningonline.co.uk/pol/about.jsp).

The search identified two applications in the area which have been granted permission and could be of significance in terms of impact due to site development and potential accesses.

- M/2010/0870/F - Proposed Housing Development consisting of 47No. Dwellings (3No. Detached, 34No. Semi-Detached and 10No. Townhouses) and associated site works, located at Clonfeacle Road.
- O/2012/0460/F - Housing development and associated site works consisting of 2No. Detached Dwellings and 3No. Townhouses, located at Maydown Road.

As these have been granted permission they have been considered as committed within the Transport Assessment.

In order to take account of the traffic implications of the aforementioned committed developments within the traffic impact analysis, the volumes of traffic generated have been calculated based on the interrogation of the latest TRICS database –
version 2012 (b). In order to provide a robust assessment, 85th percentile trip rates have been used to estimate the traffic flows. Table 18.7 below, shows the anticipated traffic generation.

The trip rates are per dwelling for mixed private housing. In the AM peak the two developments generate 6 arrivals and 19 departures. In the PM peak 34 arrivals and 22 departures are generated.

Table 5 – Committed Developments Traffic Generations

<table>
<thead>
<tr>
<th>SITE REF.</th>
<th>LOCATION</th>
<th>PEAK HOUR</th>
<th>85TH PERCENTILE TRIP RATES</th>
<th>TRAFFIC GENERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARR</td>
<td>DEP</td>
</tr>
<tr>
<td>M/2010/0870/F</td>
<td>Clonfeacle Road</td>
<td>08:00-09:00</td>
<td>0.110</td>
<td>0.335</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17:00-18:00</td>
<td>0.562</td>
<td>0.363</td>
</tr>
<tr>
<td>O/2012/0460/F</td>
<td>Maydown Road</td>
<td>08:00-09:00</td>
<td>0.110</td>
<td>0.335</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17:00-18:00</td>
<td>0.562</td>
<td>0.363</td>
</tr>
</tbody>
</table>

3.10 Summary

The majority of the traffic generated by the development will be temporary construction traffic therefore the use of more sustainable modes is limited.
4 Appraising and Mitigating Impact
4 Appraising and Mitigating Impact

4.1 Introduction
This final stage of the Transport Assessment involves the assessment of the traffic impacts and devising approaches to minimise or deal with the impacts, where applicable.

4.2 Accessibility and Integration Impacts with the Local Community
Impacts under accessibility and integration include:

- Access to transport systems, access to the local area and community severance; and
- Integration between transport systems and with other land-uses.

4.2.1 Access to Public Transport System
Given the nature of the Proposed Development, the section on transport systems is not considered relevant. There are temporary access points to the towers for construction purposes, however links by foot, cycle and public transport are not considered relevant.

4.2.2 Access to Local Area
In terms of access to the local area, given the nature of the Proposed Development, and given the majority of work is temporary in nature, this element has not been considered further.

4.2.3 Community Severance
The construction of the Proposed Development will result in a temporary increase in traffic and temporary traffic management measures (see section 4.8). It is has been assessed that this will not result in any likely significant effects to community severance because of the duration and scale of the impacts.

The operation of the Proposed Development, post construction, will not result in any community severance as there will be very few associated traffic movements and no impacts to the existing road network.

4.2.4 Integration
In terms of integration between land use and transport it is unlikely that the proposals will influence interchange between modes, given the nature of the development proposals.

4.3 Safety and Security Impacts
The two main areas of safety impacts to be assessed are:

- The risk of traffic related collisions for those using and passing by the sites; and
- Feelings of insecurity for those using and passing by the sites.

In the first instance the traffic accident history of the study area has been obtained. Table 7 overleaf details the accident data between 2008 and 2010 (the latest available at the time of writing); the table details the accident severity and proximity to nearest access point.
<table>
<thead>
<tr>
<th>YEAR</th>
<th>REF</th>
<th>LOCATION</th>
<th>PROXIMITY TO NEAREST ACCESS POINT</th>
<th>SEVERITY OF COLLISION</th>
<th>SEVERITY OF CASUALTY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SLIGHT</td>
<td>SERIOUS</td>
</tr>
<tr>
<td>2008</td>
<td>1</td>
<td>Moy Road</td>
<td>160m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Drumgrannon Road</td>
<td>750m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Drumgrannon Road</td>
<td>825m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Tullyneagh Road</td>
<td>10m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Dernalea Road</td>
<td>10m</td>
<td>SLIGHT</td>
<td>2</td>
</tr>
<tr>
<td>2009</td>
<td>6</td>
<td>Drumgrannon Road</td>
<td>825m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Clonfeacle Road</td>
<td>350m</td>
<td>SLIGHT</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Clonfeacle Road</td>
<td>700m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Monaghan Road</td>
<td>400m</td>
<td>SERIOUS</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Monaghan Road</td>
<td>200m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td>2010</td>
<td>11</td>
<td>Gorestown Road</td>
<td>1000m</td>
<td>SLIGHT</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Benburb Road</td>
<td>200m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Clonfeacle Road</td>
<td>10m</td>
<td>SERIOUS</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Battleford Road</td>
<td>430m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Cormeen Road</td>
<td>310m</td>
<td>SLIGHT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Monaghan Road</td>
<td>500m</td>
<td>SERIOUS</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Not Known</td>
<td>660m</td>
<td>SLIGHT</td>
<td>3</td>
</tr>
</tbody>
</table>

Accident reference numbers 4, 5 and 13 are located 10 metres from the nearest Tower access point respectively. The following provides further information regarding these accidents:

- **Tullyneagh Road (Accident Ref 4)**
 - Vehicles involved: Collision involving one motorcycle
 - Weather/road conditions: Raining and wet road
 - Collision details: Going ahead around right hand bend, object in carriageway

- **Dernalea Road (Accident Ref 5)**
 - Vehicles involved: Collision involving two cars
 - Weather/road conditions: Bright and dry road
 - Collision details: Car going around right hand bend skidding with car behind colliding into it

- **Clonfeacle Road (Accident Ref 13)**
 - Vehicles involved: Collision involving car and HGV>7.5t
 - Weather/road conditions: Raining and wet road
 - Collision details: Car going around left hand bend skidded into oncoming HGV
The accidents detailed above were either caused by wet road conditions or driver error and the accident history data shows that there have not been three or more accidents at the same location on the network. This is a ‘normal’ indication that no remedial work is required.

As the majority of the sites are accessed via existing field gates, their locations and use by similarly sized vehicles is already known to those using them and passing them. This will lessen the risk of collisions and insecurity and on this basis, and taking account of the mitigation measures proposed later, it is not proposed to undertake road safety audits.

A road safety audit is not a check with compliance of design standards. The primary purpose of road safety audits is to identify potential road safety hazards within a scheme. As all the sites are accessed via existing access points, their location and use by similarly sized vehicles is already known to those who use them and pass by them. This will lessen the risk of collisions and insecurity. On this basis, and taking account of the mitigation measures proposed later, the relatively low flows and limited time of duration, roads safety audits are not required.

4.4 Environmental Impacts
The environmental impacts of the Proposed Development are detailed out with this Transport Assessment and are considered in detail within the Environmental Statement Chapter 18.

4.5 Highway and Traffic Impacts
4.5.1 Haul Routes
Annex 8 includes a summary of the haul routes for the proposed overhead line and towers, based on the location of the majority of local suppliers of stone and concrete and landfill facilities as well as the depot for the Proposed Development at Carn Industrial Estate. The towers have been split into sections depending on their access proposals.

Again, as previously described a difficulty encountered in regard to the identification of haul routes for the Proposed Development is that suppliers cannot be specified at this stage. On this basis haul routes to/from quarries, concrete supplier and landfills can only be assessed so far as the route from the nearest A or B class road to the development sites.

4.6 Construction Management
It should be noted that NIE intends to instruct the contractor to provide two construction teams for the towers aspect of the development, at this point estimated to complete towers 1-51 and 52-102 respectively. As the Proposed Development crosses 34km of land, the means that the two teams will be working in areas whereby for example access from Carn Industrial Estate would be via different approaches e.g. via the M1 or B28 for the northern end of the development and via the A3 for the southern end of the development. Therefore no interaction between the two teams is anticipated, as the first team approaches tower 51 for construction, the second team will be approaching tower 102 for construction. This working methodology means that the cumulative effects of the two teams working in the same area (accessing the same roads) will not occur.

4.7 Calculation of Traffic Impacts
4.7.1 Development Traffic
The estimated traffic generations are described in Sections 2.4.1.4 and 2.4.2.4.

4.7.2 Forecast Background Traffic
A number of traffic count surveys were undertaken in 2012 and 2013 for the purposes of this traffic assessment, as detailed in Section 2.3.4. It has been decided to use 2013 as the common base year, without growing the 2012 data. This methodology is based on the short period of time at which the surveys were completed i.e. November 2012 and January 2013. As there was only
3 months between these two batches of surveys and the majority of the surveys were conducted in 2013, the most appropriate combined base year for the data for the purposes of this assessment is considered to be 2013.

Section 2.3.5 details historical traffic flow figures taken from the Traffic Census of Northern Ireland. From 2006 to 2010 (latest data available) traffic levels relevant to the study area are in negative growth therefore assuming no growth between 2012 and 2013 survey data, is a reasonable assumption.

Notwithstanding this, as the Roads Service permanent Automatic Traffic Counters (ATCs) are in varying locations in the study area it has been decided to use NRTF low growth factors, in order to present a robust assessment i.e. a worst case scenario in terms of traffic forecasts.

Construction of the scheme is expected to commence in 2015 and be completed by with the year of opening for the substation detailed as 2017 and the applicable National Road Traffic Forecasts (NRTF) growth factors were applied to the baseline traffic figures to produce the forecast background traffic flows for the scheme, see Table 7.

Table 7 – NRTF Growth Factors Used in this Assessment

<table>
<thead>
<tr>
<th>NRTF</th>
<th>TOTAL GROWTH FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low All Traffic 2013-2015</td>
<td>1.023</td>
</tr>
<tr>
<td>Low All Traffic 2013 – 2017</td>
<td>1.042</td>
</tr>
</tbody>
</table>

With regard to traffic generated by committed developments within the study area, previously detailed in Section 3.9, it is considered that as NRTF low growth traffic is being used in the assessment that traffic associated with the developments is therefore already allowed for.

4.7.2.1 Traffic Impacts

Section 3.1.5 of the IHT Guidelines for Traffic Impact Assessment (1994) recommends that a detailed impact analysis is required where one or other of the following thresholds are exceeded:

- Traffic to and from the development exceeds 10 percent of the existing two-way traffic flow on the adjoining highway; or
- The development traffic exceeds 5 percent of the existing two-way traffic flow on the adjoining highway where traffic congestion exists or will exist within the assessment period or in other sensitive locations.

The 10% threshold has been adopted in this assessment, as there is no existing congestion on the surrounding road network. The substation and towers will be considered separately within this section of the report due to the differing characteristics with regard to access and traffic generations i.e. Turleenan substation will have a permanent access and the towers will have only temporary accesses for construction.

4.7.2.2 Turleenan Substation Traffic Impacts

Table 8 shows the traffic impacts for the substation during the construction phase and Table 9 shows the impacts once operational in year of opening 2017 and design year 2027. All percentage impacts are below the threshold value of 10% therefore no further detailed traffic assessment is required.
Table 8 – Turleenan Substation Traffic Impacts on Trewmount Road - Construction Phase

<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>TREWMOUNT ROAD 2015 BACKGROUND TRAFFIC (VEHS)</th>
<th>PEAK CONSTRUCTION DEVELOPMENT TRAFFIC (VEHS)</th>
<th>% IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 AM Peak Hour (08:00-09:00)</td>
<td>283</td>
<td>16</td>
<td>5.7%</td>
</tr>
<tr>
<td>2015 PM Peak Hour (17:00-18:00)</td>
<td>390</td>
<td>16</td>
<td>4.1%</td>
</tr>
<tr>
<td>2015 Daily Traffic</td>
<td>3,782</td>
<td>200</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

Table 9 – Turleenan Substation Traffic Impacts on Trewmount Road – Operational Phase

<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>TREWMOUNT ROAD BACKGROUND TRAFFIC (VEHS)</th>
<th>PEAK DEVELOPMENT TRAFFIC (VEHS)</th>
<th>% IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 AM Peak Hour (08:00-09:00)</td>
<td>291</td>
<td>1</td>
<td>0.3%</td>
</tr>
<tr>
<td>2017 PM Peak Hour (17:00-18:00)</td>
<td>401</td>
<td>1</td>
<td>0.2%</td>
</tr>
<tr>
<td>2017 Daily Traffic</td>
<td>3,881</td>
<td>10</td>
<td>0.3%</td>
</tr>
<tr>
<td>2027 AM Peak Hour (08:00-09:00)</td>
<td>321</td>
<td>1</td>
<td>0.3%</td>
</tr>
<tr>
<td>2027 PM Peak Hour (17:00-18:00)</td>
<td>443</td>
<td>1</td>
<td>0.2%</td>
</tr>
<tr>
<td>2027 Daily Traffic</td>
<td>4,286</td>
<td>10</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

4.7.2.3 Overhead Line and Towers Traffic Impacts

The same forecasting approach detailed in Section 4.5.1 has been undertaken with regard to the calculation of background traffic flows for this aspect of the development. Construction of the scheme is expected to commence in 2015 until completion in 2017. The assessment year has been taken as 2015.

Annex 4 shows the traffic impacts for the overhead line and towers in assessment year 2015. In total there a total of 25 locations on the network where the traffic impacts are over the threshold value of 10%, as follows:

1) Derrygally Way
2) Major Lane
3) Culkeeran Road
4) Rhone Road
5) Culrevog Road
6) Drumlee Road
7) Tullydowey Road
8) Artasooly Road
9) Tullysaran Road
10) Tullyneagh Road
11) Bracknagh Road
12) Navan Fort Road
13) Cormeen Road
14) Unclassified road used by access AT57
15) Ballyhoy Road
16) Brootaly Road
17) Dernalea Road
18) Hanslough Road
19) Cavanagarvan Road
20) Sheetrim Road
21) Tivnacree Road
22) Glassdrummond Road
23) Listrakelt Road
24) Derrynoose Road
25) Unclassified road used by access AT102

4.7.2.4 Summary
The traffic generated by the proposed substation at Turleenan has been shown to be below the 10% threshold value for detailed assessment therefore no further work to mitigate the effects of generated traffic is required.

With regard to the construction of the overhead line and towers, there are 25 locations where the threshold value of 10% has been exceeded. These locations have been considered in more detail within Section 4.8.

4.8 Detailed Traffic Assessment
The Transport Assessment guidelines state in Section 4.111 “The significance of a traffic impact depends not only on the percentage increase of traffic but the available capacity. A 10% increase on a lightly trafficked road may not be significant, whereas a 1% increase on a congested road will be”.

Taking this into account methods to assess the capacity of the affected roads have been identified, including:

- Calculation of Congestion Reference Flows (CRF) - The CRF of a link is an estimate of the Annual Average Daily Traffic (AADT) flow at which the carriageway is likely to be congested in the peak periods on an average day (DMRB Volume 5 Section 1 TA 46/97 ‘Traffic Flow Ranges for use in the Assessment of New Rural Roads’); and
- Traffic flow implications from first principles i.e. deriving a 12 hour flow profile for a typical day and adding the hourly generated traffic flows to get an indication of impacts in each hour.

4.8.1 Congestion Reference Flows
As per Transport Assessment Guidelines notes, the significance of a traffic impact not only depends on the percentage increase of traffic but also the available capacity. As a way of assessing the impacts of the temporary traffic generated by the construction traffic (the post construction traffic impacts are considered negligible) Congestion Reference Flows (CRF) have been examined. The CRF of a link is an estimate of AADT flow at which the carriageway is likely to be congested in the peak periods on an average day. For the purposes of calculating the CRF, congestion is defined as the situation when the hourly traffic demand exceeds the maximum sustainable hourly throughput of the link.

Links of the same road class and standard will have different CRF values which are determined by the applicable traffic flows and the value of the proportion of heavy vehicles and peak hour to daily flow ratio as well as local variants and peak hour directional split.

The CRF of a link is given by the formula:

\[CRF = \text{CAPACITY} \times \text{NL} \times \text{Wf} \times \frac{\text{100/PkF}}{\text{100/PkD}} \times \frac{\text{AADT}}{\text{AAWT}} \]

CAPACITY – is the maximum hourly lane vehicle flow (includes percentage of HGVs)
NL – is the number of lanes per direction
Wf – is the width factor
PkF – is the proportion (%) of the total daily flow (2way) that occurs in the peak hour
PkD – is the directional split (%) of the peak hour flow
AADT – is the Annual Average Daily Traffic flow on the link
AAWT – is the annual average weekday traffic flow on the link
In relation to the Proposed Development, the CRF has been calculated for 25 roads which are anticipated to experience a higher than 10% level of traffic impacts due to temporary construction traffic.

Within the guidelines relating to CRF calculations when the road width is less than 5.5 metres, the traffic analyst must use judgement to decide on the relevant value for width factor. For the purposes of this assessment, the calculations do give an initial indication of the level of capacity available. To further substantiate this information hourly traffic profiles have been created for each of the roads in question and detailed in the following subsection.

Table 10 summarises the CRF calculations for the affected roads and also the maximum predicted daily flows. In all cases it has been shown that there is adequate capacity to facilitate the predicted traffic generated by the development. Therefore whilst the percentage impacts may be above the 10 % threshold the operational capacity of the roads are such that the temporary flows associated with the construction of the towers can be accommodated.

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>CRF</th>
<th>MAXIMUM PREDICTED DAILY FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BACKGROUND</td>
</tr>
<tr>
<td>Derrygally Way</td>
<td>1,609</td>
<td>136</td>
</tr>
<tr>
<td>Major Lane</td>
<td>2,608</td>
<td>34</td>
</tr>
<tr>
<td>Culkeeran Road</td>
<td>3,684</td>
<td>152</td>
</tr>
<tr>
<td>Rhone Road</td>
<td>2,926</td>
<td>40</td>
</tr>
<tr>
<td>Culverog Road</td>
<td>836</td>
<td>61</td>
</tr>
<tr>
<td>Drumlee Road</td>
<td>2,398</td>
<td>235</td>
</tr>
<tr>
<td>Tullydowey Road</td>
<td>3,355</td>
<td>52</td>
</tr>
<tr>
<td>Artrasooly Road</td>
<td>2,293</td>
<td>460</td>
</tr>
<tr>
<td>Tullysaran Road</td>
<td>8,876</td>
<td>218</td>
</tr>
<tr>
<td>Tullymeagh Road</td>
<td>2,310</td>
<td>288</td>
</tr>
<tr>
<td>Bracknagh Road</td>
<td>2,296</td>
<td>46</td>
</tr>
<tr>
<td>Navan Fort Road</td>
<td>3,176</td>
<td>57</td>
</tr>
<tr>
<td>Cormeen Road</td>
<td>7,073</td>
<td>296</td>
</tr>
<tr>
<td>AT 57-60</td>
<td>2,882</td>
<td>73</td>
</tr>
<tr>
<td>Ballyhoy Road</td>
<td>2,989</td>
<td>26</td>
</tr>
<tr>
<td>Brootally Road</td>
<td>1,225</td>
<td>168</td>
</tr>
<tr>
<td>Deranae Road</td>
<td>1,327</td>
<td>210</td>
</tr>
<tr>
<td>Hanslough Road</td>
<td>9,594</td>
<td>501</td>
</tr>
<tr>
<td>Cavanagarvan Road</td>
<td>2,611</td>
<td>68</td>
</tr>
<tr>
<td>Sheetrtrim Road</td>
<td>3,227</td>
<td>28</td>
</tr>
<tr>
<td>Tivenacree Road</td>
<td>3,073</td>
<td>35</td>
</tr>
<tr>
<td>Glassdrummond Road</td>
<td>4,197</td>
<td>92</td>
</tr>
<tr>
<td>Listrakelt Road</td>
<td>1,024</td>
<td>174</td>
</tr>
<tr>
<td>Derrynoose Road</td>
<td>11,359</td>
<td>694</td>
</tr>
<tr>
<td>AT 102</td>
<td>793</td>
<td>12</td>
</tr>
</tbody>
</table>
It should be noted that the CRF is affected by proportion of HGVs so a narrower lane might have a higher capacity because the proportion of HGVs is low.

4.8.2 Traffic Flow Implications from First Principles

Typical weekday daily traffic profiles over a 12 hour period, 07:00-19:00 have been derived from the ATC survey data for the roads under assessment and growthed to the first year of construction; 2015, see Annex 6.

Each profile shows the following:

- 2015 forecast background traffic for each hour period, 07:00-19:00;
- Maximum daily generated traffic for each hour period, 07:00-19:00;
- Total hourly flow for background and development traffic; and
- The total estimated flow per minute for each hour period i.e. background plus development traffic (on the day of maximum development traffic).

It should be noted the flows included in the calculations are the worst case scenario, i.e. the peak daily construction flow, therefore for the majority of construction days the traffic flows would be less. Furthermore the construction period is for a limited number of days.

The purpose of the above process is to give an indication of the traffic flows on the affected roads in practical terms i.e. the traffic flow demand over the hour period. Table 11 overleaf summarises the peak hourly demand for each of the roads under consideration and the total number of days affected i.e. number of construction days. However, it should be noted that the peak development flows are assessed in the table and that for the majority of other days the development traffic flows would be lower.

Due to the nature of the study area, a number of the roads are unclassified and a column within Table 11 provides an indication of the roads widths. They have been calculated on the basis of topographical survey information collected as part of the study. Where more than one topographical survey was undertaken the road width was calculated as the average of a number of widths. It also includes a column which indicates the number of informal passing opportunities available on each of the roads. There are locations along the routes which are narrow and which currently act as areas where two vehicles can pass each other should they meet.
<table>
<thead>
<tr>
<th>ROAD</th>
<th>ROAD WIDTH</th>
<th>NO. OF DAYS AFFECTED</th>
<th>MAX HOUR FLOW (BACKGROUND+DEV)</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derrygally Way</td>
<td>3.6</td>
<td>3</td>
<td>19</td>
<td>17 16 informal passing opportunities</td>
</tr>
<tr>
<td>Major Lane</td>
<td>2.7</td>
<td>2</td>
<td>19</td>
<td>16 informal passing opportunities</td>
</tr>
<tr>
<td>Culkeeran Road</td>
<td>4.2</td>
<td>19</td>
<td>17</td>
<td>3 14 passing opportunities, up to junction</td>
</tr>
<tr>
<td>Phone Road</td>
<td>3.0</td>
<td>38</td>
<td>6</td>
<td>5 11 informal passing opportunities</td>
</tr>
<tr>
<td>Culkeeran Road</td>
<td>2.9</td>
<td>73</td>
<td>6</td>
<td>6 11 informal passing opportunities</td>
</tr>
<tr>
<td>Drumkeer Road</td>
<td>3.2</td>
<td>26</td>
<td>9</td>
<td>5 10 informal passing opportunities</td>
</tr>
<tr>
<td>Tullivy Road</td>
<td>4.7</td>
<td>122</td>
<td>49</td>
<td>5 10 informal passing opportunities</td>
</tr>
<tr>
<td>Artacloy Road</td>
<td>4.9</td>
<td>28</td>
<td>6</td>
<td>3 9 14 informal passing opportunities</td>
</tr>
<tr>
<td>Tullaveen Road</td>
<td>4.4</td>
<td>15</td>
<td>7</td>
<td>10 informal passing opportunities</td>
</tr>
<tr>
<td>Rhone Road</td>
<td>3.0</td>
<td>38</td>
<td>6</td>
<td>5 11 informal passing opportunities</td>
</tr>
<tr>
<td>Culkeeran Road</td>
<td>3.9</td>
<td>49</td>
<td>2</td>
<td>3 9 informal passing opportunities</td>
</tr>
<tr>
<td>Navan Road</td>
<td>3.0</td>
<td>39</td>
<td>6</td>
<td>3 9 14 informal passing opportunities</td>
</tr>
<tr>
<td>Navan Fort Road</td>
<td>3.0</td>
<td>39</td>
<td>6</td>
<td>3 10 informal passing opportunities</td>
</tr>
<tr>
<td>Navan Fort Road</td>
<td>3.0</td>
<td>39</td>
<td>6</td>
<td>3 10 informal passing opportunities</td>
</tr>
<tr>
<td>Navan Fort Road</td>
<td>3.0</td>
<td>39</td>
<td>6</td>
<td>3 10 informal passing opportunities</td>
</tr>
<tr>
<td>Navan Fort Road</td>
<td>3.0</td>
<td>39</td>
<td>6</td>
<td>3 10 informal passing opportunities</td>
</tr>
<tr>
<td>Navan Fort Road</td>
<td>3.0</td>
<td>39</td>
<td>6</td>
<td>3 10 informal passing opportunities</td>
</tr>
<tr>
<td>Navan Fort Road</td>
<td>3.0</td>
<td>39</td>
<td>6</td>
<td>3 10 informal passing opportunities</td>
</tr>
<tr>
<td>Navan Fort Road</td>
<td>3.0</td>
<td>39</td>
<td>6</td>
<td>3 10 informal passing opportunities</td>
</tr>
</tbody>
</table>

Table 11 – Summary of Maximum Predicted Hourly Flows and Details of Passing Opportunities
4.8.3 Consideration of Impact on Road Pavements and Below Pavement Infrastructure

The condition of road pavements depends on a number of specific factors including, pavement / foundation / sub grade make up, loading to date, past maintenance levels, annual average axle loading, traffic growth, etc. In order to assess this matter, we have conducted an initial desk top assessment of the typical roads intended for access use and the likely impact of the construction vehicles on these roads.

There are basically three main categories of road that will be utilised, to service the construction of the substation and towers forming the interconnector project. These include Motorways and A Roads, B Roads and Unclassified Roads. Each is discussed in turn below.

4.8.3.1 Motorway and A Roads

These are primary routes carrying higher traffic volumes with a high percentage of commercial vehicles. These roads will have long life designs, capable of withstanding numerous repeated standard axles and maximum UK axle loadings throughout their life. The majority of these roads form part of the strategic road network for Northern Ireland and will have been designed (or will have been assessed to confirm that they are designed) in accordance with the DMRB. These roads will be constantly monitored and maintained by the overseeing authority. The below pavement infrastructure (i.e. pipes and culverts will also have been designed (or will have been assessed) to comply with the standards established in the DMRB with high factors of safety.

The overall impact on road pavements and below ground infrastructure on Motorways and Class ‘A’ Roads from construction vehicles, in comparison with current traffic, is considered negligible. Construction vehicles will have axle loading factors that are well within the general usage figures for roads of this nature.

4.8.3.2 B Roads

These tend to be secondary routes, but will also have been designed to meet DMRB standards. The traffic volumes will be less than those for Motorways and A Roads, but will again have been designed to accommodate a significant volume of commercial vehicles. These roads tend to be monitored on a cyclic basis and entered into the system for major or minor maintenance or accepted until the next assessment. The below ground infrastructure will again have been designed to (or will have been assessed to) comply with the standards established in the DMRB with high factors of safety.

The overall impact on road pavements and below ground infrastructure on Class ‘B’ Roads from construction vehicles, in comparison with current traffic, is considered low to moderate. A visual assessment of these routes will be undertaken and a condition report prepared and agreed with Road Service prior to commencement of the works. As the roads are classified and maintained by Road Service, an agreement on monitoring strategy will be agreed with them. The residual impact is likely to be slight.

4.8.3.3 C Class and Unclassified Roads:

These roads tend to serve as local access to business and residential properties, linking them with the classified road network. Road Service is again responsible for operating and maintaining these roads, in Northern Ireland, as for the classified roads. However, the pavement construction associated with the vast majority of these roads will not have been designed to meet or comply with DMRB standards, neither will the below ground infrastructure. The maintenance of these routes is likely to be on a passive ad-hoc basis, i.e. in direct response to localised failure. The construction of these roads will vary greatly and will be highly inconsistent and related to the historical formation of the route.

The impact on road pavements and below ground infrastructure on unclassified roads from construction vehicles, in comparison with current traffic, is considered moderate, however the following section on mitigation shows this can be ameliorated.

4.8.4 Impacts at Temporary Accesses to Towers

The locations of the temporary accesses used in the development proposals were identified in extensive on-site survey work undertaken by NIE. Where possible existing field gates and laneways have been used on the premise that they are being used currently by large farm machinery and therefore similar to the vehicles proposed to construct the towers. Vehicles will therefore be able to pull off the public road and undertake their operations without impacting on local traffic. As part of the transport
assessment process the accesses have been assessed with regard to their use during the construction of the towers and overhead line. These access points are identified in Annex 1.

A series of AutoTrack assessments have been undertaken at the proposed entrance points. These have been undertaken on topographic survey bases to increase accuracy. These were tracked for a worst case scenario, which includes:

- Fastrac vehicle with 8 metre trailer;
- 8 cubic metre concrete lorry; and
- Where applicable tipper trucks for stone delivery.

Out of the total 104 temporary accesses associated with the construction of the overhead line and towers a total of 59 accesses cannot facilitate the required manoeuvres associated with the construction vehicles without enhancement/mitigation measures either at the access or en route from the nearest feeder road. The accesses include the following:

- Derrygally Way – AT2
- Major Lane – AT7
- Culkeeran Road – AT10
- Rhone Road – AT13 and AT14
- Culrevog Road – AT18 and AT19
- Benburb Road – AT20, AT26
- Drumlee Road – AT24-25
- Clonfeacle Road – AT29
- Tullydowey Road – AT30, AT31-32A, AT32B
- Artasooly Road – AT33, AT34, AT35
- Tullysaran Road – AT41A, AT41B-42
- Tullynegagh Road – AT43
- Battleford Road – AT45
- Bracknagh Road – AT47, AT48A, AT49, AT50
- Navan Fort Road – AT51, AT52, AT52SL
- Killylea Road – AT54
- Brootally Road – AT65, AT67
- Dernalea Road – AT71SL2, AT72
- Unclassified Road – AT74
- Maddan Road – AT74SL1, AT74SLB, AT74SL2
- Unclassified Road – AT75
- Hanslough Road – AT76
- Cavanagarvan Road – AT77-78A, AT77-78B, AT79
- Sheetrtrim Road – AT80, AT81, AT82, AT83A, AT83B, AT84
- Drumhillery Road – AT86
- Tivnacree Road – AT89, AT90
- Glassdrummond Road – AT91
- Unclassified Road – AT93-94
- Listrackelt Road – AT97, AT98
- Doohat Road – AT99
- Derrynoose Road – AT100
- Unclassified Road – AT102A, AT102B

Annex 9 includes a table showing the assessment of the access tracks and identifies what type of mitigation/enhancement measures are required i.e. access improvements or en route improvements.
Annex 9 also includes the AutoTrack assessments of the accesses where the required manoeuvres can be accommodated, and therefore no mitigation/enhancement is required. These accesses total 45 and include:

- Trewmount Road – AT1, AT3-4-5-6
- Moy Road – AT8-9
- Culkeeran Road – AT11, AT12
- Gorestown Road – AT15
- Culrevog Road – AT16-17
- Benburb Road – AT21, AT22-23
- Drumlee Road – AT23SL, AT27-28
- Artasooly Road – AT33SL, AT36, AT37-37SL-38-39, AT40
- Battleford Road – AT44, AT46
- Bracknagh Road – AT48B
- Killylea Road – AT53
- Cormeen Road – AT55, AT56
- Unclassified Road – AT57-58, AT58SL, AT59-60
- Ballyhoy Road – AT61
- Unclassified Road – AT62SL
- Monaghan Road spur – AT62-63, AT64
- Brootally Road – AT66
- Dernalea Road – AT68A, AT68B, AT69, AT70, AT71-71SL1
- Maddan Road – AT73
- Sheetrtrim Road – AT85
- Drumhilly Road – AT85SL, AT87A
- Tivnacree Road – AT87B, AT88
- Glassdrummond Road – AT92
- Fergort Road – AT95
- Unclassified Road – AT96
- Derrynoose Road – AT101
- Crossbane Road – ATOS

It should be noted that for accesses located at the end of lanes i.e. AT32B, AT59-60, AT61, AT62-63, AT64 and AT71-71SL1, that no AutoTrack assessment has been undertaken as all vehicle movements would be possible due to road alignment.

4.8.5 Summary
Overall the traffic volumes required to be accommodated by the roads under consideration are low and have a temporary nature i.e. only for a limited number of days. The section above has indicated both the background traffic and the development traffic flows are low and within the estimated link capacity. In addition it should be noted if two vehicles meet on roads that are too narrow for two vehicles to pass each other there are currently numerous informal passing opportunities that allow these manoeuvres to take place.

4.9 Mitigation
4.9.1 Turleenan Substation
4.9.1.1 Access Arrangements
As stated previously, there is an existing dwelling (No. 152 Trewmount Road) located within the confines of the development site. The development proposals involve initially allowing the dwelling to remain during the construction phase (to be used as a site
office), with a temporary access located to the northern edge of the site, as shown in Figure 2. Once the majority of the
construction work is completed, it is intended to demolish the dwelling and locate the permanent access to the site in this
location. Figure 3 shows the proposed permanent access location.

Annex 5 includes a Technical Note describing the calculation of the sightline requirements on the basis of a traffic speed survey
and in accordance with DCAN 15 standards. For both temporary and permanent accesses at Turleenan Substation it is proposed
to provide 15 metres radii and 4.5 x 168.3 metres sightlines, which are compliant with DCAN15.

The permanent access road will be 10 metres wide for the first 20 metres from the priority road to allow vehicles to pass each
other safely, reducing to a 6 metres wide road for the remaining distance to the substation.

4.9.1.2 Traffic Management
In terms of traffic management for the proposed substation, haul routes will be designated for construction traffic. Haulage routes
will make use of A and B roads.

During construction, traffic movements will be limited during construction to a maximum of 200 vehicle movements per day (2
way movements) and all parking associated with the development will occur within the development site. Due to volume of spoil
to be removed off site, wheel cleaning facilities will be provided for relevant vehicles.

4.9.2 Overhead Line and Towers
The following sections detail the proposed enhancement / mitigation measures proposed for the 59 accesses identified in Section
4.8.4.

4.9.2.1 Mitigation Measurement 1 – Traffic Management at the Site Access
A total of 27 accesses require traffic management at the site access. Traffic management measures include either enforcement
of restricted construction traffic movements at the access e.g. left in, right out, or ‘shuttle running’ traffic management on the
adjoining road as follows:

Traffic Management - Restricted Movements at the Site Access
There are 17No. in total including:
- Benburb Road – AT20
- Drumlee Road – AT24-25
- Clonfeacle Road – AT29
- Tullyneagh Road – AT43
- Bracknagh Road – AT48A, AT49
- Navan Fort Road – AT51
- Killylea Road – AT54
- Brootally Road – AT65, AT67
- Dernalea Road – AT71SL2, AT72
- Maddan Road – AT74SL2
- Sheetrim Road – AT80
- Tivnacree Road – AT89, AT90
- Unclassified Road – AT93-94

Traffic Management – ‘Shuttle Running’ on Adjoining Road at Site Access
There are 10No. in total including:
- Culkeeran Road – AT10
- Benburb Road – AT26
- Artasooly Road – AT33, AT35
- Battleford Road – AT45
- Bracknagh Road – AT47
- Hanslough Road – AT76
- Drumhillery Road – AT86
- Doohat Road – AT99
- Derrynoose Road – AT100

Annex 10 includes a typical layout showing the ‘shuttle running’ traffic management measures proposed for the 10 accesses detailed above.

4.9.2.2 Mitigation Measurement 2 – Access Widening Required
A total of 20 accesses require widening to facilitate the required construction vehicle manoeuvres:
- Rhone Road – AT13
- Culrevog Road – AT18 and AT19
- Artasooly Road – AT34
- Tullysaran Road – AT41A, AT41B-42
- Bracknagh Road – AT50
- Navan Fort Road – AT52, AT52SL
- Maddan Road – AT74SL1A
- Cavanagarvan Road – AT77-78A, AT77-78B, AT79
- Sheetrim Road – AT81, AT82, AT83A, AT83B, AT84,
- Glassdrummond Road – AT91

4.9.2.3 Mitigation Measurement 3 – Traffic Management required en route to access from feeder road.
A total of 5 accesses require traffic management en route:
- Derrygally Way – AT2
- Rhone Road – AT14
- Tullydowey Road – AT31-32A, AT32B
- Maddan Road – AT74SL1B

4.9.2.4 Mitigation Measurement 4 – Traffic Management required at access and also en route to access from feeder road.
A total of 2 accesses require traffic management en route:
- Unclassified Road – AT75 (restricted traffic movements at access)
- Listrakelt Road – AT97

4.9.2.5 Mitigation Measurement 5 – Widening required at access and Traffic Management required en route
A total of 5 accesses require widening at the access and traffic management en route:
- Major Lane – AT7
- Tullydowey Road – AT30
- Unclassified Road – AT74
- Unclassified Road – AT102A (restricted movements at access), AT102B (restricted movements at access)

4.9.2.6 Summary
All 104 temporary access points required for the construction of the overhead line and towers have been assessed using AutoTrack to ascertain whether the existing geometries of the accesses can facilitate all the required construction vehicle
manoeuvres on and off the adjoining road. A total of 45 accesses have been identified which can facilitate all the required movements. The remainder of the accesses (59) require the following mitigation measures:

- **Mitigation Measure 1 - Traffic Management at the Site Access** – 17 No. have restricted movements at the site access and 10 No. require ‘shuttle running’ traffic management.
- **Mitigation Measure 2 - Access Widening** – 20 No. require widening to accommodate the required construction vehicles
- **Mitigation Measure 3 - Traffic Management En Route from Feeder Road** – 5 No. accesses
- **Mitigation Measure 4 - Traffic Management Measures required at Access and En Route from Feeder Road** – 2 No. accesses
- **Mitigation Measure 5 - Access Widening and Traffic Management En Route from Feeder Road** – 5 No. accesses

Annex 10 includes drawings showing the mitigation measures proposed for the accesses requiring widening and also a typical layout showing the ‘shuttle running’ traffic management measures proposed.

For the junctions requiring widening the drawings include sight lines, radii, and swept path analysis showing a JCB Fastrac vehicle with a trailer (the most onerous turning movement expected) and designed in accordance with standards in Development Control Advice Note 15 (DCAN 15) Vehicular Access Standards.

With regard to the accesses requiring traffic management measures to be deployed en route, the detail of the traffic management would be agreed as part of the Construction Traffic Management Plan. An outline plan has been produced at this stage (see Section 4.12), the detail of which (within the parameters set by the outline plan) would be agreed by the contractor with Roads Service prior to construction. Options include one way systems or use of traffic control over stretches of the road, e.g. use of stop/go boards.

It should be noted that if it is determined by the Planning Service on advice by Roads Service that temporary traffic measures are not to be used, existing accesses could be temporarily enlarged to accommodate the larger types of construction vehicles. In this case, all construction vehicles could enter the proposed sites and make deliveries off the public road network without requiring traffic management at the site access. The area required for the temporarily enlarging the existing accesses has been identified and included within the planning application boundary. On the basis of the Department’s determination, where the accesses are to be widened, vegetation will be cleared (where applicable) and any affected services and drainage will be amended to ensure normal operation during the construction phase and replacement vegetation will be planted after the construction phase along with stock proof fencing, where required.

4.10 Parking

Throughout the construction phase construction staff will not be allowed to park on the public highways. To further minimise staff vehicles, all staff will travel to/from the construction sites in mini-buses.

Once operational the proposed substation will have a total of 6 no. parking spaces. The maximum generated traffic at the substation is never likely to require parking in excess of this number of spaces.

In summary there will be no parking impacts caused by the Proposed Development on the surrounding road network.

4.11 Road Pavements and Below Pavement Infrastructure

A Maintenance Plan for the works will be developed that will incorporate a monitoring and maintenance strategy for the haul routes associated with the scheme. This will focus primarily on unclassified roads and to a lesser extent on the class B roads. As the impact on class A roads is negligible in comparison with normal traffic volumes, regular liaison with Road Service should suffice.
The overall Construction Traffic Management Plan (CTMP) for the works will ensure that construction vehicle haul routes follow the hierarchal (top down) approach to site access, i.e. the largest portion of the route will be on A roads, then B roads and only using unclassified roads for short stretches. The plan will be prepared in three stages:

- Design Stage (by designer in consultation with Road Service)
- Construction Stage (enhanced by contractor in consultation with Road Service)
- Post Construction and Maintenance Stage (post construction monitoring by design team, contractor and Road Service)

The Maintenance Plan should follow a pre agreed format which was outlined in previously submitted reports (extracted below).

4.11.1 Overview
A maintenance plan will be developed and agreed with Roads Service at Design Stage and incorporated into the Stage 1 CTMP for the assessment and maintenance of the public highway and associated infrastructure. The contractor will adopt and develop this strategy in liaison with Roads Service through the course of the works ensuring its implementation and incorporation in to the construction stage CTMP.

4.11.2 Baseline Assessment
The strategy will likely commence, prior to construction, with a form of initial visual assessment of the proposed road network backed up with photographic records to determine a baseline condition survey. A grading will be applied. This will then be developed into an agreed format and included in the CTMP as an addendum report. The strategy will also include prevention and repair strategy should the baseline condition of the existing public highway fall by more than an agreed grade point average.

4.11.3 Prevention of Damage to the Public Highway
Where construction or delivery vehicles, required to complete the works, are considered to impact on the public highway (where applicable to be agreed with Roads Service), mitigation measures will be developed to ensure the risk of damage is minimised.

A clear procedure will also be established and incorporated into the CTMP to ensure that areas of the public highway utilised through the construction period will be kept clear of debris and any damage caused by, or directly related to, construction activities will be reported and repaired within a pre-agreed timescale.

4.11.4 Repairs to Damage to Roadways
The agreed haul routes on Class and Unclassified Road (C/UC) used by construction and delivery vehicles will be monitored on a regular basis by Road Service and the Contracting Team. All damage will be reported immediately. This will ensure that the damage can be assessed and the cause established without delay.

All damage to these haul routes, which can be attributed to the construction activities associated with the works, will be repaired to an agreed standard within a pre agreed timescale. This obligation will be written into any bond agreement required with the overseeing authority prior to commencement of the works and clearly presented in the CTMP.

The stage 1 CTMP will make this obligation clear to the selected contractor during the tender process. A clear record of all repairs carried out will be kept on file and placed in the CTMP and safety file following completion of the works for future reference and supplied to Road Service.

4.12 Construction Traffic Management Plan
Prior to construction, a Construction Traffic Management Plan would be prepared and submitted to Roads Service following consultation with other stakeholders such as the Police Service of Northern Ireland. An outline plan has been drawn up at this stage; see Annex 11. However, the appointed contractor would finalise this traffic management plan (within the parameters set by the outline plan) with Roads Service and adhere to its detail during the construction of the line. This plan would include the following:
If required, appropriate Police or contractor escort to accompany movement of components to be agreed with the Roads Service and Police where appropriate;

Advanced notification to the general public warning of transport movements;

Informative road signage warning other users of forthcoming construction traffic movements;

Arrangement for regular road maintenance and cleaning, e.g. road sweeping in the vicinity of the site access point as necessary;

In order to reduce traffic and parking impacts, construction personnel would be required to travel to the construction sites in mini-buses / staff work van type vehicles.

Wheel cleaning/dirt control arrangements at key stages of constructions; and

Provision of temporary signs and traffic control where necessary.

4.13 Conclusions

4.13.1 Turleenan Substation
The construction and operational phases of the Turleenan Substation have been shown to generate traffic impacts of less than the threshold value of 10% for detailed assessment and therefore no further work in this regard is required.

Two accesses are proposed as part of the development, a temporary access for construction and a permanent one once operational. Both accesses are located off Trewmount Road and have been designed to be compliant with DCAN 15 with regard to layout and sightlines.

All parking associated with construction traffic can be accommodated within the construction site and once operational 6No. parking spaces will be provided for staff and/or visitors, which will more than adequately cater for the demand. Therefore no extraneous parking associated with this part of the development is anticipated.

Furthermore a Construction Traffic Management Plan will be implemented to designate haul routes to and from the substation and manage daily movement to and from the site to be less than 200 vehicle movements per day (two-way).

4.13.2 Overhead Line and Towers
The overhead line and towers will require the use of a total of 104 temporary access points. Existing accesses i.e. field gates and laneways have been identified as the preferred access points in order to minimise the impacts and disruption of providing new accesses.

NIE intends to instruct the contractor to provide two construction teams for the towers aspect of the development, at this point estimated to complete towers 1-51 and 52-102 respectively. Due to the scale of the development i.e. over an approx. 34km length, interaction between the two teams is not anticipated, as the first team approaches tower 51 for construction, the second team will be approaching tower 102 for construction. This working methodology will be actioned through a construction traffic management plan. Therefore, the cumulative effect of the two teams working at the same time in terms of traffic on particular roads on the network is removed.

The Construction Traffic Management Plan would also specify the haul routes for each tower access to negate impacts on unsuitable roads.

Traffic impacts of more than the threshold value of 10% for further assessment have been identified at 25 locations on the affected network. Further analysis of the affected roads has been undertaken with regard to link capacities, flow increases per hour and identification of the existing informal passing opportunities. Overall the traffic volumes required to be accommodated by the roads under consideration are low and have a temporary nature i.e. only for a limited number of days. In all cases the background traffic and the development traffic flows are low and within the estimated link capacities.
All proposed accesses have been analysed with AutoTrack, with the ‘worst case’ construction vehicle type i.e. Fastrac and 8 metres long trailer. A number of accesses (45) can facilitate the vehicle manoeuvres with their existing geometries/layout. The remainder will require traffic management measures to allow the use of the accesses as they stand, either at the access or en route to the access on the adjoining roads (where existing road widths are lower than 4 metres wide).

If it is determined by the Planning Service on advice by Roads Service that temporary traffic measures are not to be used, where possible existing accesses could be temporarily enlarged to accommodate the larger types of construction vehicles. In this case, all construction vehicles could enter the proposed sites and make deliveries off the public road network without requiring traffic management at the site access.

Where the accesses are to be widened, vegetation will be cleared (where applicable) and any affected services and drainage will be amended to ensure normal operation during the construction phase. After construction should the temporary enlargement of existing accesses be required, replacement vegetation will be planted after the construction phase along with stock proof fencing, where required.

In addition, and prior to construction, a Construction Traffic Management Plan for construction related traffic would be prepared and submitted to Roads Service for consideration.
5 Summary and Conclusions
5 Summary and Conclusions

5.1 Key Points
This report has examined the transport impacts of the proposed Tyrone Cavan Interconnector, with the key points as follows:

Development Proposals
- The Proposed Development consists of a new substation at Turleenan, outside Moy, County Tyrone and the construction of approximately 34km of 400kv overhead line from the source substation to the Tyrone and Cavan county border, where it will tie into the Electricity Supply Board network (Republic of Ireland).
- The proposed substation will commence construction in 2015 and take 3 years to complete in 2017. The access proposals include a temporary access for construction and also a permanent access once operational. Both accesses are located off Trewmount Road B106.
- The overhead line will require the construction of 102 No. towers through the use of 104No. temporary accesses which have been identified by NIE through extensive on site survey recognisance work. Where possible existing field gates and laneways have been used on the premise that if they are already being used by farm machinery they would more likely also be suitable for the type of construction vehicles proposed as part of the development proposals.
- It is intended to use NIE’s existing depot at Carn Industrial Estate, Craigavon as the depot for the construction of the proposed development.
- During construction the site working hours will be restricted to 07:00 – 19:00 or hours of daylight Monday to Friday. Saturday working hours will be restricted to 07:00-13:00 or hours of daylight. No Sunday or night working except for emergency works (pumping of excavations, not construction).
- NIE intends to instruct the contractor to provide two construction teams for the overhead line and towers, at this point estimated to complete towers 1-51 and 52-102 respectively.

Development Traffic Generation
- The substation traffic flows are estimated to have a peak daily flow of 200 vehicles per day during the construction phase (2015-2017) and 2 vehicles per day during the operational phase.
- The majority of the temporary accesses used for the construction of the overhead line and towers would be used for between 15 and 19 construction days in total. The maximum daily traffic flow would be less than 60 vehicles per day. Average daily trip generation range between 9 and 25 trips per day. Once construction of the overhead line is complete, access for maintenance will occur every two years by foot or by a single 4x4 vehicle using existing field gates and laneways.
- Largest vehicles used for construction would be a Fastrac vehicle with 8 metre long trailer, 8 cubic metre concrete lorry and tipper trucks for stone deliveries.
- Staff would be required to travel to the development sites in mini-buses/work van vehicles, originating from Carn Industrial Estate.
- Due to the particular location and nature of the proposals public transport services, facilities for pedestrians and cyclists and alternative travel modes are limited.

Traffic Impacts
- Traffic count information for those roads likely to be temporarily impacted by the development was obtained from surveys undertaken in November 2012 and January 2013. The base year was assumed to be 2013.
- Historical traffic growth has shown negative growth on the local network. To provide a robust assessment NRTF low growth has been used to forecast background traffic growth.
- Following traffic surveys and analysis of current traffic conditions on the adjoining road, the morning AM and evening PM peak hours were found to be 08:00-09:00 and 17:00-18:00 respectively.
- The 10% threshold for detailed traffic impact analysis has been adopted in this assessment, as there is no existing congestion on the surrounding road network.
- Traffic impacts of the proposed substation are less than the 10% threshold during the construction phase (2015-2017). They are also less than 10% in year of opening, 2017 and design year, 2027.
- Traffic impact analysis of the construction of the overhead line and towers has shown that there are 25 locations whereby the traffic impacts would be over 10%. However, the traffic impacts would only be during the construction phase and therefore are a temporary effect of the development. Those roads which experience a temporary increase of greater than 10%, have been
shown to have the operational capacity to accommodate the additional temporary traffic associated with the construction of the towers.

Access Assessments

- Analysis shows that 45 temporary access points used to construct the overhead line and towers can use existing gate entrances as their dimensions are sufficient to accommodate the required vehicle types.
- Mitigation measures are proposed for 59 of the temporary accesses used to construct the overhead line and towers. Measures include the implementation of traffic management measures at the access or en route from the nearest feeder road and/or junction widening.
- Haul routes have been designated as far as possible at this stage until a contractor is appointed and suppliers identified. On this basis haul routes to/from quarries, concrete supplier and landfills can only be assessed so far as the route from the nearest A or B class road to the development sites, the impacts beyond this are unlikely to be significant.
- An outline Construction Traffic Management Plan has been produced with the detail to be agreed by the contractor (within the parameters set within the outline plan) with Roads Service prior to construction.
- Should it be required (on the basis of the determination of the Department), all existing accesses could be temporarily enlarged to accommodate the larger types of construction vehicles, so that no traffic management at the access points is required and the accesses are in line with standards in DCAN 15.

A separate Environmental Impact Assessment (EIA) and Statement has been prepared for this Proposed Development.
Figures
Visible Splays - Figure 26003220

Visibility Splay Tangential to Back of Verge

Section of Stone Wall to be Relocated Behind Splay (See Inset 1 Above)

Inset 1

Scale 1:200

Scale 1:1000 @ A3
VISIBILITY SPLAYS - FIGURE 36003220

VISIBILITY SPLAYS
TANGENTIAL TO BACK OF VERGE

SECTION OF STONE WALL
TO BE RELOCATED BEHIND
VISIBILITY SPLAY
(SEE INSET 1 ABOVE)

4.5mx X 168.3m
VISIBILITY SPLAYS

INSET 1
SCALE 1:200

KEY
VERGE LINE
FENCE LINE
HEDGE LINE
WALL

SCALE 1:1000 @ A3

Project Management Initials: Designer: Checked: Approved:

TYRONE CAVAN INTERCONNECTOR
SUBSTATION PERMANENT ACCESS
VISIBILITY SPLAYS - FIGURE 3
Annexes
<table>
<thead>
<tr>
<th>ACCESS REF.</th>
<th>TOTAL TOWERS ACCESSED</th>
<th>TOWER NO.'S</th>
<th>ADJOINING ROAD</th>
<th>ROAD NAME</th>
<th>ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT1</td>
<td>1</td>
<td>T1 & Turleenan Sub Station</td>
<td>Trewmount Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT2</td>
<td>1</td>
<td>T2</td>
<td>Denygally Way</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT3-4-5-6</td>
<td>4</td>
<td>T3, T4, T5 & T6</td>
<td>Trewmount Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT7</td>
<td>1</td>
<td>T7</td>
<td>Major Lane</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT8-9</td>
<td>2</td>
<td>T8 & T9</td>
<td>Moy Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ROAD NAME</td>
<td>PHOTO</td>
<td>ACCESS</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>AT10</td>
<td>1</td>
<td>T10</td>
<td>Culkeeran Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT11</td>
<td>1</td>
<td>T11</td>
<td>Culkeeran Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT12</td>
<td>1</td>
<td>T12</td>
<td>Culkeeran Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT13</td>
<td>1</td>
<td>T13</td>
<td>Rhone Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT14</td>
<td>1</td>
<td>T14</td>
<td>Rhone Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>AT15</td>
<td>1</td>
<td>T15</td>
<td>Gorestown Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT16-17</td>
<td>2</td>
<td>T16, T17</td>
<td>Culrevog Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT18</td>
<td>1</td>
<td>T18</td>
<td>Culrevog Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT19</td>
<td>1</td>
<td>T19</td>
<td>Culrevog Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT20</td>
<td>1</td>
<td>T20</td>
<td>Benburb Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>AT21</td>
<td>1</td>
<td>T21</td>
<td>Benburb Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT22-23</td>
<td>2</td>
<td>T22 & T23</td>
<td>Benburb Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT24-25</td>
<td>2</td>
<td>T24 & T25</td>
<td>Drumlee Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT235L</td>
<td>0</td>
<td>N/A</td>
<td>Drumlee Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT26</td>
<td>1</td>
<td>T26</td>
<td>Benburb Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>PHOTO</td>
<td>ACCESS</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>AT27-28</td>
<td>2</td>
<td>T27 & T28</td>
<td>Drumlee Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT29</td>
<td>1</td>
<td>T29</td>
<td>Clonfeacle Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT30</td>
<td>1</td>
<td>T30</td>
<td>Tullydowey Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT31-32A</td>
<td>2</td>
<td>T31 & T32</td>
<td>Tullydowey Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>AT32B</td>
<td>1</td>
<td>T32</td>
<td>Tullydowey Road</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ROAD NAME</td>
<td>PHOTO</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>AT33</td>
<td>1</td>
<td>T33</td>
<td>Artasooey Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT33S</td>
<td>0</td>
<td>N/A</td>
<td>Artasooey Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT34</td>
<td>1</td>
<td>T34</td>
<td>Artasooey Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT35</td>
<td>1</td>
<td>T35</td>
<td>Artasooey Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT36</td>
<td>1</td>
<td>T36</td>
<td>Artasooey Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>AT37-375L-38-39</td>
<td>3</td>
<td>T37, T38 & T39</td>
<td>Artasooly Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT40</td>
<td>1</td>
<td>T40</td>
<td>Tullysaran Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT41B-42</td>
<td>2</td>
<td>T41 & T42</td>
<td>Tullysaran Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT43</td>
<td>1</td>
<td>T43</td>
<td>Tullyneagh Road</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AT44</td>
<td>1</td>
<td>T44</td>
<td>Battleford Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ROAD NAME</td>
<td>PHOTO</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>AT45</td>
<td>1</td>
<td>T45</td>
<td>Battleford Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT46</td>
<td>1</td>
<td>T46</td>
<td>Battleford Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT47</td>
<td>1</td>
<td>T47</td>
<td>Bracknagh Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT48A</td>
<td>1</td>
<td>T48</td>
<td>Bracknagh Road</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>AT48B</td>
<td></td>
<td></td>
<td></td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESS</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ROAD NAME</td>
<td>PHOTO</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>AT49-49SL</td>
<td>1</td>
<td>T49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT50</td>
<td>1</td>
<td>T50</td>
<td>Bracknagh Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT51</td>
<td>1</td>
<td>T51</td>
<td>Navan Fort Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT52</td>
<td>1</td>
<td>T52</td>
<td>Navan Fort Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT52SL</td>
<td>0</td>
<td>N/A</td>
<td>Navan Fort Road</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Access Locations

<table>
<thead>
<tr>
<th>Access Ref.</th>
<th>Total Towers Accessed</th>
<th>Tower No.'s</th>
<th>Adjoining Road</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT53</td>
<td>1</td>
<td>T53</td>
<td>Killylea Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT54</td>
<td>1</td>
<td>T54</td>
<td>Killylea Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT55</td>
<td>1</td>
<td>T55</td>
<td>Cormeen Road</td>
<td>New</td>
</tr>
<tr>
<td>AT56</td>
<td>1</td>
<td>T56</td>
<td>Cormeen Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT57-58</td>
<td>2</td>
<td>T57 & T58</td>
<td>No name</td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>AT585L</td>
<td>0</td>
<td>N/A</td>
<td>No name</td>
<td></td>
</tr>
<tr>
<td>AT59-60</td>
<td>2</td>
<td>T59 & T60</td>
<td>No name</td>
<td></td>
</tr>
<tr>
<td>AT61</td>
<td>1</td>
<td>T61</td>
<td>Ballyhoy Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT62-63</td>
<td>2</td>
<td>T62 & T63</td>
<td>Monaghan Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT62SL</td>
<td>1</td>
<td>T62</td>
<td>Tullycallidy Road</td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>AT64</td>
<td>1</td>
<td>T64</td>
<td>Monaghan Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT65</td>
<td>1</td>
<td>T65</td>
<td>Brootally Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT66</td>
<td>1</td>
<td>T66</td>
<td>Brootally Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT67</td>
<td>1</td>
<td>T67</td>
<td>Brootally Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT68A</td>
<td>1</td>
<td>T68</td>
<td>Demalea Road</td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ROAD NAME</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AT68B</td>
<td>1</td>
<td>T68</td>
<td>Demalea Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT69</td>
<td>1</td>
<td>T69</td>
<td>Demalea Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT70</td>
<td>1</td>
<td>T70</td>
<td>Demalea Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT71:71L1</td>
<td>1</td>
<td>T71</td>
<td>No name</td>
<td>Road Temporarily Closed During Site Visit - No Picture Available</td>
</tr>
<tr>
<td>AT71L2</td>
<td>0</td>
<td>N/A</td>
<td>Demalea Road</td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>AT72</td>
<td>1</td>
<td>T2</td>
<td>Deralea Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT73</td>
<td>1</td>
<td>T3</td>
<td>Maddan Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT74</td>
<td>1</td>
<td>T4</td>
<td>No name</td>
<td></td>
</tr>
<tr>
<td>AT74L1A</td>
<td>0</td>
<td>N/A</td>
<td>Maddan Road</td>
<td>New</td>
</tr>
<tr>
<td>AT74L1B</td>
<td>0</td>
<td>N/A</td>
<td>No name</td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.’S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>AT74SL2</td>
<td>0</td>
<td>N/A</td>
<td>Maddan Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT75</td>
<td>1</td>
<td>T75</td>
<td>No name</td>
<td>Existing</td>
</tr>
<tr>
<td>AT76</td>
<td>1</td>
<td>T76</td>
<td>Hanslough Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT78A</td>
<td>1</td>
<td>T77-T78</td>
<td>Cavanagarvan Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT78B</td>
<td>2</td>
<td>T78 & T79</td>
<td>Cavanagarvan Road</td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ROAD NAME</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AT79</td>
<td>1</td>
<td>T79</td>
<td>Cavanagarvan Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT80</td>
<td>1</td>
<td>T80</td>
<td>Sheetrim Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT81</td>
<td>1</td>
<td>T81</td>
<td>Sheetrim Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT82</td>
<td>1</td>
<td>T82</td>
<td>Sheetrim Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT83A</td>
<td>1</td>
<td>T83</td>
<td>Sheetrim Road</td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESS</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>PHOTO</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>AT83B</td>
<td>1</td>
<td>TB3</td>
<td>Sheetrim Road</td>
<td></td>
</tr>
<tr>
<td>AT84</td>
<td>2</td>
<td>TB4</td>
<td>Sheetrim Road</td>
<td></td>
</tr>
<tr>
<td>AT85</td>
<td>1</td>
<td>TB5</td>
<td>Sheetrim Road</td>
<td></td>
</tr>
<tr>
<td>AT85SL</td>
<td>0</td>
<td>N/A</td>
<td>Drumhillery Road</td>
<td></td>
</tr>
<tr>
<td>AT86</td>
<td>1</td>
<td>TB6</td>
<td>Drumhillery Road</td>
<td></td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ROAD NAME</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AT87A</td>
<td></td>
<td>1</td>
<td>T87</td>
<td>Drumhilly Road</td>
</tr>
<tr>
<td>AT87B</td>
<td></td>
<td>1</td>
<td>T87</td>
<td>Tinnacree Road</td>
</tr>
<tr>
<td>AT88</td>
<td>1</td>
<td>T88</td>
<td>Tinnacree Road</td>
<td></td>
</tr>
<tr>
<td>AT89</td>
<td>1</td>
<td>T89</td>
<td>Tinnacree Road</td>
<td></td>
</tr>
<tr>
<td>AT90</td>
<td>1</td>
<td>T90</td>
<td>Tinnacree Road</td>
<td></td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>AT91</td>
<td>1</td>
<td>T91</td>
<td>Glassdrummond Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT92</td>
<td>1</td>
<td>T92</td>
<td>Glassdrummond Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT93-94</td>
<td>2</td>
<td>T93 & T94</td>
<td>No name</td>
<td>Existing</td>
</tr>
<tr>
<td>AT95</td>
<td>1</td>
<td>T95</td>
<td>Fergort Road</td>
<td>Existing</td>
</tr>
<tr>
<td>AT96</td>
<td>1</td>
<td>T96</td>
<td>No name</td>
<td>Existing</td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>AT97</td>
<td>1</td>
<td>T97</td>
<td>Listrakelt Road</td>
<td>Existing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT98</td>
<td>1</td>
<td>T98</td>
<td>Listrakelt Road</td>
<td>Existing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT99</td>
<td>1</td>
<td>T99</td>
<td>Derrynoose Road</td>
<td>Existing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT100</td>
<td>1</td>
<td>T100</td>
<td>Derrynoose Road</td>
<td>Existing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT101</td>
<td>1</td>
<td>T101</td>
<td>Derrynoose Road</td>
<td>Existing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCESS REF.</td>
<td>TOTAL TOWERS ACCESSED</td>
<td>TOWER NO.'S</td>
<td>ADJOINING ROAD</td>
<td>ACCESS</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>AT102A</td>
<td>1</td>
<td>T102</td>
<td>No name</td>
<td>Existing</td>
</tr>
<tr>
<td>AT102B</td>
<td>1</td>
<td>T102</td>
<td>No name</td>
<td>Existing</td>
</tr>
<tr>
<td>AT05</td>
<td>-</td>
<td>-</td>
<td>Crossbane Road</td>
<td>Existing</td>
</tr>
</tbody>
</table>
Annex 2 - Determination of Peak Hour Calculations
TA ANNEX 2: PEAK HOUR CALCULATIONS

<table>
<thead>
<tr>
<th>NO.</th>
<th>SITE LOCATION</th>
<th>YEAR</th>
<th>SITE NO.</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trewmount Rd</td>
<td>2012</td>
<td>00:00</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>Moy Road</td>
<td>2012</td>
<td>01:00</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>Culverag Rd</td>
<td>2012</td>
<td>02:00</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>Benbur Rd</td>
<td>2012</td>
<td>03:00</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>Clonfeacle Rd</td>
<td>2012</td>
<td>04:00</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>Artasoo Rd</td>
<td>2012</td>
<td>05:00</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>Battleford Rd</td>
<td>2012</td>
<td>06:00</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>Killylea Rd</td>
<td>2012</td>
<td>07:00</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>Brotally Rd</td>
<td>2012</td>
<td>08:00</td>
<td>96</td>
</tr>
<tr>
<td>10</td>
<td>Dernalea Rd</td>
<td>2012</td>
<td>09:00</td>
<td>96</td>
</tr>
<tr>
<td>11</td>
<td>Drumherry Rd</td>
<td>2012</td>
<td>10:00</td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>Fergot Rd</td>
<td>2012</td>
<td>11:00</td>
<td>96</td>
</tr>
<tr>
<td>13</td>
<td>Lisnabett Rd</td>
<td>2012</td>
<td>12:00</td>
<td>96</td>
</tr>
<tr>
<td>14</td>
<td>Monaghan Rd</td>
<td>2012</td>
<td>13:00</td>
<td>96</td>
</tr>
<tr>
<td>15</td>
<td>Maddan Rd</td>
<td>2012</td>
<td>14:00</td>
<td>96</td>
</tr>
<tr>
<td>16</td>
<td>Carn Rd</td>
<td>2012</td>
<td>15:00</td>
<td>96</td>
</tr>
<tr>
<td>17</td>
<td>Derrygally Way</td>
<td>2012</td>
<td>16:00</td>
<td>96</td>
</tr>
<tr>
<td>18</td>
<td>Major Lane</td>
<td>2012</td>
<td>17:00</td>
<td>96</td>
</tr>
<tr>
<td>19</td>
<td>Culkeeran Rd</td>
<td>2012</td>
<td>18:00</td>
<td>96</td>
</tr>
<tr>
<td>20</td>
<td>Rone Rd</td>
<td>2012</td>
<td>19:00</td>
<td>96</td>
</tr>
<tr>
<td>21</td>
<td>Goreystown Rd</td>
<td>2012</td>
<td>20:00</td>
<td>96</td>
</tr>
<tr>
<td>22</td>
<td>Drumlee Rd</td>
<td>2012</td>
<td>21:00</td>
<td>96</td>
</tr>
<tr>
<td>23</td>
<td>Tullydrewy Rd</td>
<td>2012</td>
<td>22:00</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>Tullysaran Rd</td>
<td>2012</td>
<td>23:00</td>
<td>96</td>
</tr>
<tr>
<td>25</td>
<td>Tullynagh Rd</td>
<td>2012</td>
<td>00:00</td>
<td>96</td>
</tr>
<tr>
<td>26</td>
<td>Battleford Rd</td>
<td>2012</td>
<td>01:00</td>
<td>96</td>
</tr>
<tr>
<td>27</td>
<td>Bracknagh Rd</td>
<td>2012</td>
<td>02:00</td>
<td>96</td>
</tr>
<tr>
<td>28</td>
<td>Navan Fort Rd</td>
<td>2012</td>
<td>03:00</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>Cormeen Rd</td>
<td>2012</td>
<td>04:00</td>
<td>96</td>
</tr>
<tr>
<td>30</td>
<td>No Name</td>
<td>2012</td>
<td>05:00</td>
<td>96</td>
</tr>
<tr>
<td>31</td>
<td>Tullycaldery Rd</td>
<td>2012</td>
<td>06:00</td>
<td>96</td>
</tr>
<tr>
<td>32</td>
<td>Ballyboy Rd</td>
<td>2012</td>
<td>07:00</td>
<td>96</td>
</tr>
<tr>
<td>33</td>
<td>No Name</td>
<td>2012</td>
<td>08:00</td>
<td>96</td>
</tr>
<tr>
<td>34</td>
<td>Derrylea Rd</td>
<td>2012</td>
<td>09:00</td>
<td>96</td>
</tr>
<tr>
<td>35</td>
<td>Hanslough Rd</td>
<td>2012</td>
<td>10:00</td>
<td>96</td>
</tr>
<tr>
<td>36</td>
<td>Cavanagarvan Rd</td>
<td>2012</td>
<td>11:00</td>
<td>96</td>
</tr>
<tr>
<td>37</td>
<td>Sheestrin Rd</td>
<td>2012</td>
<td>12:00</td>
<td>96</td>
</tr>
<tr>
<td>38</td>
<td>Glossaddmond Rd</td>
<td>2012</td>
<td>13:00</td>
<td>96</td>
</tr>
<tr>
<td>39</td>
<td>No Name</td>
<td>2012</td>
<td>14:00</td>
<td>96</td>
</tr>
<tr>
<td>40</td>
<td>Derryneose Rd</td>
<td>2012</td>
<td>15:00</td>
<td>96</td>
</tr>
<tr>
<td>41</td>
<td>No Name</td>
<td>2012</td>
<td>16:00</td>
<td>96</td>
</tr>
<tr>
<td>42</td>
<td>Crosssane Rd</td>
<td>2012</td>
<td>17:00</td>
<td>96</td>
</tr>
</tbody>
</table>

TOTAL:

<table>
<thead>
<tr>
<th>YEAR</th>
<th>SITE NO.</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>189</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>974</td>
<td>775</td>
</tr>
<tr>
<td></td>
<td>1,761</td>
<td>3,139</td>
</tr>
<tr>
<td></td>
<td>2,235</td>
<td>1,390</td>
</tr>
<tr>
<td></td>
<td>2,178</td>
<td>2,313</td>
</tr>
<tr>
<td></td>
<td>2,757</td>
<td>3,056</td>
</tr>
<tr>
<td></td>
<td>3,464</td>
<td>2,581</td>
</tr>
<tr>
<td></td>
<td>2,062</td>
<td>1,964</td>
</tr>
<tr>
<td></td>
<td>1,313</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>435</td>
<td>435</td>
</tr>
</tbody>
</table>

NOTE:

- Year 2012 and 2013 data are provided.
- The table represents peak hour calculations for various sites.
- Each row indicates a site and the corresponding hour calculations.
- The columns include site number, site location, year, and specific hours for calculations.
- The data includes numerical values representing different measurements or calculations.
Annex 3 - Overhead Lines and Towers Traffic Generation
Annex 4 - Overhead Lines and Towers Traffic Impacts
Annex 5 - Technical Note on Sightline Requirements for Turleenan Substation Accesses
Background
AECOM Ltd has been commissioned by Northern Ireland Electricity (NIE) to carry out an assessment of the site access arrangements for the NIE Turleenan Substation situated on B106 Trewmount Road. This technical note details the sightline requirements on the basis of guidelines within Development control Advice Note (DCAN) 15.

Access Design Options
There are two potential accesses under review in relation to the proposed substation. Initially when construction work begins access to the site will be via a temporary access to the north of 152 Trewmount Road. This will provide for the existing buildings on the site to stay in use during construction, if required. The access will make use of the existing laneway adjacent to the site. This temporary track consists of stones and will be in place until construction works are complete. Once construction work is complete a permanent access will replace the temporary access to the site and will be located south of the temporary access, requiring the demolition of the existing dwelling on the site.

The accesses have been designed to NIE specification of 10m width for the first 20m then 6m thereafter with 15m radii for the typical large vehicle using the road to construct and serve the sub-station.

Development Traffic Generation
Temporary Access
The Temporary access will be used for the construction phase of the development. At the peak of the construction phase there will be no more than 200 vehicles per day (two way) using the accesses.

Permanent Access
Once completed traffic will access the site via the permanent access. It is anticipated for the majority of the time the operational traffic will total a maximum of one vehicle per week i.e. 2 vehicle movements (two way). Notwithstanding this at the peak traffic generation time when maintenance traffic is also generated i.e. over a period of one week per calendar year 3 or 4 vehicles per day entering or exiting the site (6 or 8 two way). Therefore to represent a robust assessment the peak traffic generation per day is anticipated as 10 vehicles per day (two way) using the access.

Speed Survey
Methodology
Speed surveys were undertaken, taking cognisance of guidelines within Department Of Transport Roads And Local Transport Directorate Departmental Advice Note TA 22/81 - Vehicle Speed Measurement on All Purpose Roads. The survey methodology included:
The survey was undertaken in a typical week using an automated traffic counter. The survey was carried out from 14th March to 20th March 2009, during which the weather was cloudy and the road surface dry.

The survey location was on Trewmount Road at the midpoint of the site frontage.

Results

The results of the speed survey are summarised in Table 1 below and the raw survey data is shown in Appendix 1.

<table>
<thead>
<tr>
<th>SURVEY DETAILS</th>
<th>SITE ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NORTHBOUND</td>
</tr>
<tr>
<td>85th Percentile Dry Weather Spot Speed</td>
<td>58.4mph</td>
</tr>
</tbody>
</table>

Section 3.4 of TA 22/81 states “For improvement of alignments and major/minor junctions or accesses, and for new major/minor junctions or accesses on existing roads, the normal design methods are based on the 85th percentile wet weather journey speed of vehicles. To get from the dry weather spot speed of vehicles measured to the wet weather journey speed used in design, one of the following correction factors should be used:

- For AP dual carriageways - deduct 8kph (5mph)
- For AP single carriageways - deduct 4kph (2.5mph)

From Table 1, the maximum 85th percentile dry weather spot speed is 58.5mph for the site access onto Trewmount Road. Applying the reduction of 2.5mph for single carriageways provides a design wet weather journey speed of 56mph.

Visibility Splays

The temporary site access will have an estimated maximum two way flow in the order of 200 vehicles throughout the construction period. The permanent site access will have an estimated maximum two way flow in the order of 10 vehicles per day. The design speed on the priority road at the proposed access is 56mph.

DCAN 15 states the minimum X distance requirement for a development with traffic flow between 60 and 1000 vpd is normally 4.5m. This may be reduced to 2.4m, but only if traffic speeds on the priority road are below 60 kph (37 mph) and danger is unlikely to be caused.

The Y distance for a design speed of 56mph and access flow of between 60 and 1000 vpd is 168.3m. Hence the sightline requirements for the temporary access are 4.5m x 168.3m.

DCAN 15 states for an access with flow of up to 60 vpd the minimum X distance is 2.4m. The Y distance in this occasion is 133.3m. Hence the sightline requirements for the permanent access are 2.4 x 133.3m.
Conclusion

For both the access locations, the temporary and the permanent, sightlines of 4.5m x 168.3m are achieved without encroaching on third party land however removal of a wall is required at the front of 152 Trewmount Road. Roads Service has confirmed via telephone conversation that they have adopted the road across the full width of the carriageway including the verges from the centre of the hedge.

On the basis of a speed survey, the sightline requirements for the proposed development accesses have been calculated. The requirements for the temporary accesses are 4.5m x 168.3m on the basis of a maximum daily traffic flow of 200vpd. The requirements for the permanent access are 2.4m x 133.3m on the basis of a maximum daily flow of 10vpd. Notwithstanding this it is proposed to provide the larger sightlines (4.5m x 168.3m) for both access.
ATC SPEED SURVEY DATA
Channel 1 - Northbound

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Vehicle Speeds</th>
<th>Traffic Speeds (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Channel 2 - Southbound

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Vehicle Speeds</th>
<th>Traffic Speeds (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Channel 1 - Northbound

<table>
<thead>
<tr>
<th>Time Range</th>
<th>No. 0-10</th>
<th>No. 11-20</th>
<th>No. 21-30</th>
<th>No. 31-35</th>
<th>No. 36-40</th>
<th>No. 41-45</th>
<th>No. 46-50</th>
<th>No. 51-55</th>
<th>No. 56-60</th>
<th>No. 61-70</th>
<th>No. 71-80</th>
<th>No. 81-90</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 3</td>
<td>00000000</td>
<td>0000000</td>
<td>13</td>
</tr>
<tr>
<td>2 3 0</td>
<td>00000000</td>
<td>0000000</td>
<td>31</td>
</tr>
<tr>
<td>3 2 1</td>
<td>00000000</td>
<td>0000000</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>71000000</td>
<td>8000000</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>12000000</td>
<td>1200000</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>00000000</td>
<td>0000000</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>20000000</td>
<td>2000000</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8000000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Channel 2 - Southbound

<table>
<thead>
<tr>
<th>Time Range</th>
<th>No. 0-10</th>
<th>No. 11-20</th>
<th>No. 21-30</th>
<th>No. 31-35</th>
<th>No. 36-40</th>
<th>No. 41-45</th>
<th>No. 46-50</th>
<th>No. 51-55</th>
<th>No. 56-60</th>
<th>No. 61-70</th>
<th>No. 71-80</th>
<th>No. 81-90</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 7</td>
<td>00000000</td>
<td>0000000</td>
<td>17</td>
</tr>
<tr>
<td>2 1 5</td>
<td>00000000</td>
<td>0000000</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>91000000</td>
<td>9100000</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>62000000</td>
<td>6200000</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>11000000</td>
<td>1100000</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>13000000</td>
<td>1300000</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>20000000</td>
<td>2000000</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Vehicle Classes

<table>
<thead>
<tr>
<th>Vehicle Classes</th>
<th>Vehicle Speeds (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above shows the traffic data for Dungannon ATC, Trew Mount Road, Dungannon for the period 15/03/2009. The data includes the number of vehicles in each time range for northbound and southbound directions. The vehicle classes are not specified in the image.
Channel 1 - Northbound

<table>
<thead>
<tr>
<th>Vehicle Class</th>
<th>Speeds (MPH)</th>
<th>0-10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-35</th>
<th>36-40</th>
<th>41-45</th>
<th>46-50</th>
<th>51-55</th>
<th>56-60</th>
<th>61-70</th>
<th>71-80</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Class</td>
<td>Speeds (MPH)</td>
<td>0-10</td>
<td>11-20</td>
<td>21-30</td>
<td>31-35</td>
<td>36-40</td>
<td>41-45</td>
<td>46-50</td>
<td>51-55</td>
<td>56-60</td>
<td>61-70</td>
<td>71-80</td>
<td>TOTAL</td>
</tr>
<tr>
<td>Vehicle Class</td>
<td>Speeds (MPH)</td>
<td>0-10</td>
<td>11-20</td>
<td>21-30</td>
<td>31-35</td>
<td>36-40</td>
<td>41-45</td>
<td>46-50</td>
<td>51-55</td>
<td>56-60</td>
<td>61-70</td>
<td>71-80</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Channel 1 - Southbound

<table>
<thead>
<tr>
<th>Vehicle Class</th>
<th>Speeds (MPH)</th>
<th>0-10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-35</th>
<th>36-40</th>
<th>41-45</th>
<th>46-50</th>
<th>51-55</th>
<th>56-60</th>
<th>61-70</th>
<th>71-80</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Class</td>
<td>Speeds (MPH)</td>
<td>0-10</td>
<td>11-20</td>
<td>21-30</td>
<td>31-35</td>
<td>36-40</td>
<td>41-45</td>
<td>46-50</td>
<td>51-55</td>
<td>56-60</td>
<td>61-70</td>
<td>71-80</td>
<td>TOTAL</td>
</tr>
<tr>
<td>Vehicle Class</td>
<td>Speeds (MPH)</td>
<td>0-10</td>
<td>11-20</td>
<td>21-30</td>
<td>31-35</td>
<td>36-40</td>
<td>41-45</td>
<td>46-50</td>
<td>51-55</td>
<td>56-60</td>
<td>61-70</td>
<td>71-80</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Vehicle Classes

- **Vehicle Class A**
- **Vehicle Class B**
- **Vehicle Class C**
- **Vehicle Class D**
- **Vehicle Class E**
- **Vehicle Class F**
- **Vehicle Class G**
- **Vehicle Class H**
- **Vehicle Class I**
- **Vehicle Class J**
- **Vehicle Class K**
- **Vehicle Class L**
- **Vehicle Class M**
- **Vehicle Class N**
- **Vehicle Class O**
- **Vehicle Class P**
- **Vehicle Class Q**
- **Vehicle Class R**
- **Vehicle Class S**
- **Vehicle Class T**
- **Vehicle Class U**
- **Vehicle Class V**
- **Vehicle Class W**
- **Vehicle Class X**
- **Vehicle Class Y**
- **Vehicle Class Z**
Channel 1 - Northbound

<table>
<thead>
<tr>
<th>Vehicle Classes</th>
<th>Vehicle Speeds (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>115</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>145</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>155</td>
<td>0</td>
</tr>
</tbody>
</table>

Channel 1 - Southbound

<table>
<thead>
<tr>
<th>Vehicle Classes</th>
<th>Vehicle Speeds (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>115</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>145</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>155</td>
<td>0</td>
</tr>
</tbody>
</table>

Channel 2 - Northbound

<table>
<thead>
<tr>
<th>Vehicle Classes</th>
<th>Vehicle Speeds (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>115</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>145</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>155</td>
<td>0</td>
</tr>
</tbody>
</table>

Channel 2 - Southbound

<table>
<thead>
<tr>
<th>Vehicle Classes</th>
<th>Vehicle Speeds (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>115</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>145</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>155</td>
<td>0</td>
</tr>
<tr>
<td>Time</td>
<td>00-10</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Channel 1</td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>00-10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-35</th>
<th>36-40</th>
<th>41-45</th>
<th>46-50</th>
<th>51-55</th>
<th>56-60</th>
<th>61-70</th>
<th>71-80</th>
<th>81-90</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td></td>
</tr>
</tbody>
</table>

Vehicle Classes Vehicle Speeds (MPH)

Channel 1 - Northbound

<table>
<thead>
<tr>
<th>Time</th>
<th>00-10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-35</th>
<th>36-40</th>
<th>41-45</th>
<th>46-50</th>
<th>51-55</th>
<th>56-60</th>
<th>61-70</th>
<th>71-80</th>
<th>81-90</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td></td>
</tr>
</tbody>
</table>

Channel 1 - Southbound

<table>
<thead>
<tr>
<th>Time</th>
<th>00-10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-35</th>
<th>36-40</th>
<th>41-45</th>
<th>46-50</th>
<th>51-55</th>
<th>56-60</th>
<th>61-70</th>
<th>71-80</th>
<th>81-90</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td></td>
</tr>
</tbody>
</table>

Vehicle Classes Vehicle Speeds (MPH)

Channel 1 - Southbound

<table>
<thead>
<tr>
<th>Time</th>
<th>00-10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-35</th>
<th>36-40</th>
<th>41-45</th>
<th>46-50</th>
<th>51-55</th>
<th>56-60</th>
<th>61-70</th>
<th>71-80</th>
<th>81-90</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td></td>
</tr>
</tbody>
</table>

Vehicle Classes Vehicle Speeds (MPH)
Channel 1 - Northbound

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Channel 2 - Southbound

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Annex 6 – CRF Calculations
<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>CAVRAG A/AWTR (%)</th>
<th>WIDTH FACTOR</th>
<th>CRF</th>
<th>P/KD</th>
<th>P/LH</th>
<th>PKD - From Survey Data</th>
<th>AADT / AWTR Ratio Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deraghdow Road</td>
<td>2.605</td>
<td>0.325</td>
<td>137</td>
<td>9.0</td>
<td>9.0</td>
<td>4.39% 1 13% 3 3 33% 6 6.7% 17 14 63% 3 13%</td>
<td></td>
</tr>
<tr>
<td>Major Lane</td>
<td>2.608</td>
<td>0.370</td>
<td>34</td>
<td>2.7</td>
<td>2.7</td>
<td>3.13% 1 13% 2 1 50% 1 50% 3 1 33% 2 6.7%</td>
<td></td>
</tr>
<tr>
<td>Culleenan Road</td>
<td>3.644</td>
<td>0.575</td>
<td>153</td>
<td>7.2</td>
<td>7.2</td>
<td>5.7% 2 38% 7 4 57% 3 43% 12 2 17% 10 83%</td>
<td></td>
</tr>
<tr>
<td>Ballyneal Road</td>
<td>2.926</td>
<td>0.408</td>
<td>40</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0% 0 0% 0 0 0% 2 3 50% 3 50%</td>
<td></td>
</tr>
<tr>
<td>Colmeen Road</td>
<td>2.855</td>
<td>0.361</td>
<td>62</td>
<td>3.0</td>
<td>3.0</td>
<td>48.7% 2 0% 0 0 0% 29 11 38% 18 62% 23 14 61% 9 39%</td>
<td>60 65 0.92307</td>
</tr>
<tr>
<td>Benbur Road</td>
<td>4.382</td>
<td>0.761</td>
<td>824</td>
<td>2.96</td>
<td>3.73</td>
<td>43.6% 1 1% 278 124 55% 124 45% 962 168 46% 196 54%</td>
<td>600 813 0.9404</td>
</tr>
<tr>
<td>Ballymac Road</td>
<td>2.418</td>
<td>0.416</td>
<td>337</td>
<td>2.0</td>
<td>2.0</td>
<td>12% 2 10% 7 3 47% 10 53% 38 16 47% 30 53%</td>
<td></td>
</tr>
<tr>
<td>Tullamore Road</td>
<td>2.393</td>
<td>0.648</td>
<td>464</td>
<td>2.48</td>
<td>2.08</td>
<td>54% 4 45% 251 135 62% 96 38% 344 129 53% 110 47%</td>
<td>450 490 0.9184</td>
</tr>
<tr>
<td>Tullaween Road</td>
<td>3.861</td>
<td>0.676</td>
<td>218</td>
<td>2.5</td>
<td>2.5</td>
<td>1% 0 0% 7 3 47% 10 53% 38 16 47% 30 53%</td>
<td></td>
</tr>
<tr>
<td>Arisaac Road</td>
<td>3.169</td>
<td>0.513</td>
<td>46</td>
<td>0.6</td>
<td>0.6</td>
<td>1% 0 0% 4 1 25% 9 25% 3 7% 3 25%</td>
<td></td>
</tr>
<tr>
<td>Moore Road</td>
<td>7.133</td>
<td>0.725</td>
<td>298</td>
<td>3.8</td>
<td>3.8</td>
<td>12% 3 3% 35 28 80% 7 20% 37 12 32% 25 68%</td>
<td></td>
</tr>
<tr>
<td>AT 5760</td>
<td>2.068</td>
<td>0.595</td>
<td>73</td>
<td>1.2</td>
<td>1.2</td>
<td>10% 1 0% 7 6 86% 1 14% 12 3 25% 9 79%</td>
<td></td>
</tr>
<tr>
<td>Ballyhoy Road</td>
<td>3.805</td>
<td>0.370</td>
<td>26</td>
<td>1.2</td>
<td>1.2</td>
<td>1% 0 0% 1 0 0% 1 0 0% 1 100% 2 2 100% 0 0%</td>
<td></td>
</tr>
<tr>
<td>Ballynag Road</td>
<td>1.225</td>
<td>0.584</td>
<td>169</td>
<td>5.4</td>
<td>5.4</td>
<td>32% 7 5% 52 29 56% 23 44% 73 32 44% 41 56%</td>
<td>164 181 0.90077</td>
</tr>
<tr>
<td>Derriloda Road</td>
<td>1.367</td>
<td>0.568</td>
<td>711</td>
<td>7.0</td>
<td>8.5</td>
<td>34% 5 49% 70 19 27% 51 73% 83 51 61% 32 39%</td>
<td>305 210 0.9714</td>
</tr>
<tr>
<td>Kilkildonagh Road</td>
<td>2.633</td>
<td>0.372</td>
<td>68</td>
<td>7.7</td>
<td>7.7</td>
<td>11% 1 1 % 5 7 71% 2 29% 7 2 29% 5 7% 7 11% 1 1%</td>
<td></td>
</tr>
<tr>
<td>Caheragh Road</td>
<td>3.294</td>
<td>0.374</td>
<td>28</td>
<td>2.0</td>
<td>2.0</td>
<td>1% 0 0% 2 1 50% 1 50% 0 0 0% 0 0% 0 0%</td>
<td></td>
</tr>
<tr>
<td>Tullamore Road</td>
<td>3.998</td>
<td>0.365</td>
<td>35</td>
<td>2.4</td>
<td>2.4</td>
<td>6% 1 1% 24 22 65% 12 32% 57 16 32% 19 66%</td>
<td></td>
</tr>
<tr>
<td>Glasdirmond Road</td>
<td>4.232</td>
<td>0.455</td>
<td>93</td>
<td>5.7</td>
<td>7.6</td>
<td>5% 1 1% 5 1 50% 1 50% 4 1 50% 2 50% 2 50%</td>
<td></td>
</tr>
<tr>
<td>Lisnabrin Road</td>
<td>1.324</td>
<td>0.342</td>
<td>175</td>
<td>5.4</td>
<td>6.9</td>
<td>31% 3 3% 52 28 54% 24 46% 58 32 55% 26 45%</td>
<td>170 177 0.960462</td>
</tr>
<tr>
<td>Derryhouse Road</td>
<td>2.045</td>
<td>0.416</td>
<td>694</td>
<td>7.1</td>
<td>7.1</td>
<td>1% 1 1% 45 17 39% 28 62% 53 28 53% 35 47%</td>
<td></td>
</tr>
<tr>
<td>AT 502</td>
<td>800</td>
<td>0.411</td>
<td>12</td>
<td>0.8</td>
<td>6% 0.0% 0 0% 2 1 50% 1 50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annex 7 - 12 Hour Traffic Profiles for Roads with more than 10% Traffic Impacts
TA ANNEX 7: 12 HOUR FLOW PROFILES

NIE Tyrone-Cavan Interconnector

Consolidated ES

TA Annex 7: 12 Hour Flow Profiles

<table>
<thead>
<tr>
<th>HOUR BEGINNING</th>
<th>CULVERGO ROAD</th>
<th>DERRYGALLY WAY</th>
<th>MAJOR LANE</th>
<th>CULKISERAN ROAD</th>
<th>RITONE ROAD</th>
<th>DRUMMEE ROAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>08:00</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>09:00</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>10:00</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>11:00</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>12:00</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>13:00</td>
<td>5</td>
<td>10</td>
<td>13</td>
<td>7</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>14:00</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>15:00</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>16:00</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>17:00</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>14</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>18:00</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOUR BEGINNING</th>
<th>TULLYDOONEY ROAD</th>
<th>ARTASAGOLY ROAD</th>
<th>TULLYSARAN ROAD</th>
<th>TULLYNEAGH ROAD</th>
<th>BRACKNAGH ROAD</th>
<th>NAVAN FORT ROAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00</td>
<td>11</td>
<td>13</td>
<td>18</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>08:00</td>
<td>22</td>
<td>25</td>
<td>29</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>09:00</td>
<td>25</td>
<td>28</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>10:00</td>
<td>25</td>
<td>28</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>11:00</td>
<td>19</td>
<td>22</td>
<td>26</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>12:00</td>
<td>22</td>
<td>25</td>
<td>29</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>13:00</td>
<td>25</td>
<td>28</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>14:00</td>
<td>25</td>
<td>28</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>15:00</td>
<td>19</td>
<td>22</td>
<td>26</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>16:00</td>
<td>22</td>
<td>25</td>
<td>29</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>17:00</td>
<td>25</td>
<td>28</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>18:00</td>
<td>25</td>
<td>28</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOUR BEGINNING</th>
<th>COMMEEN ROAD</th>
<th>UNCLASSIFIED ROAD (AT57-59)</th>
<th>BALLYHOT ROAD</th>
<th>BROOTALY ROAD</th>
<th>DERNALEA ROAD</th>
<th>HARPLOUGH ROAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00</td>
<td>10</td>
<td>4</td>
<td>14</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>08:00</td>
<td>36</td>
<td>1</td>
<td>37</td>
<td>7</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>09:00</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td>3</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10:00</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td>3</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>11:00</td>
<td>12</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12:00</td>
<td>18</td>
<td>1</td>
<td>19</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>13:00</td>
<td>17</td>
<td>1</td>
<td>18</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>14:00</td>
<td>19</td>
<td>2</td>
<td>21</td>
<td>3</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>15:00</td>
<td>27</td>
<td>2</td>
<td>29</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>16:00</td>
<td>27</td>
<td>2</td>
<td>29</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>17:00</td>
<td>38</td>
<td>1</td>
<td>39</td>
<td>12</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>18:00</td>
<td>20</td>
<td>4</td>
<td>24</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOUR BEGINNING</th>
<th>CAVANAGARVAN ROAD</th>
<th>SHEETERM ROAD</th>
<th>TYNNACREE ROAD</th>
<th>GLASSDRUMMOND ROAD</th>
<th>LiSTRAKEL YT</th>
<th>DERRYNOOSE ROAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>08:00</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>09:00</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10:00</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>11:00</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>12:00</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>13:00</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>14:00</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>15:00</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>16:00</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>17:00</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>18:00</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOUR BEGINNING</th>
<th>UNCLASSIFIED ROAD (AT102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00</td>
<td>0</td>
</tr>
<tr>
<td>08:00</td>
<td>0</td>
</tr>
<tr>
<td>09:00</td>
<td>0</td>
</tr>
<tr>
<td>10:00</td>
<td>0</td>
</tr>
<tr>
<td>11:00</td>
<td>0</td>
</tr>
<tr>
<td>12:00</td>
<td>0</td>
</tr>
<tr>
<td>13:00</td>
<td>0</td>
</tr>
<tr>
<td>14:00</td>
<td>0</td>
</tr>
<tr>
<td>15:00</td>
<td>0</td>
</tr>
<tr>
<td>16:00</td>
<td>1</td>
</tr>
<tr>
<td>17:00</td>
<td>1</td>
</tr>
<tr>
<td>18:00</td>
<td>1</td>
</tr>
</tbody>
</table>

Note

- The table above represents 12-hour flow profiles from various locations in the Tyrone-Cavan Interconnector project. Each row indicates the traffic flow for a specific hour, with columns specifying the location and traffic values for each hour. This data is crucial for understanding traffic patterns and planning infrastructure needs in the region.

- The tables are structured with headers indicating the time period (e.g., 07:00, 08:00) and columns for different roads and traffic metrics. Each column header specifies the type of road or location, with additional columns for specific traffic metrics like traffic volume or flow rate.

- The data is organized to facilitate easy comparison between different hours and locations, aiding in the analysis of traffic flow dynamics over the 12-hour period.

- The information is presented in a clear, structured format, making it accessible for further analysis and decision-making in the context of traffic management and infrastructure planning.
Annex 8 – Haul Routes
<table>
<thead>
<tr>
<th>SECTION</th>
<th>ROAD</th>
<th>COUNTY ROAD ACCESS</th>
<th>REFERENCED ROADS</th>
<th>SUMMARY OF ROAD ROUTE</th>
<th>SITE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 northbound</td>
<td>A20 southbound</td>
</tr>
<tr>
<td>2</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 southbound</td>
<td>A20 northbound</td>
</tr>
<tr>
<td>3</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 northbound</td>
<td>A20 southbound</td>
</tr>
<tr>
<td>4</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 southbound</td>
<td>A20 northbound</td>
</tr>
<tr>
<td>5</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 northbound</td>
<td>A20 southbound</td>
</tr>
<tr>
<td>6</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 southbound</td>
<td>A20 northbound</td>
</tr>
<tr>
<td>7</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 northbound</td>
<td>A20 southbound</td>
</tr>
<tr>
<td>8</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 southbound</td>
<td>A20 northbound</td>
</tr>
<tr>
<td>9</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 northbound</td>
<td>A20 southbound</td>
</tr>
<tr>
<td>10</td>
<td>A12</td>
<td>B553-Townsend Road</td>
<td>A20</td>
<td>A20 southbound</td>
<td>A20 northbound</td>
</tr>
</tbody>
</table>

Legend:
- **A12**: A12 Motorway
- **A20**: A20 Motorway
- **B553**: B553 Road
- **SUMMARY OF ROAD ROUTE**: Reference to the road route summary
- **SITE DESCRIPTION**: Description of the site
<table>
<thead>
<tr>
<th>11</th>
<th>61</th>
<th>A167</th>
<th>Ballyhov Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>A168</td>
<td>Monaghan Road</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>A169</td>
<td>Road Inconnu</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>A170</td>
<td>Monaghan Road</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>A171</td>
<td>Bredafield Road</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>A172</td>
<td>Bredafield Road</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>A173</td>
<td>Bredafield Road</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>A174</td>
<td>Demetrie Road</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>A176</td>
<td>Demetrie Road</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>A177-71X</td>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>A178</td>
<td>Medan Road</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>A179-74X</td>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>A179</td>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>A180</td>
<td>Hankngagh Road</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>A182</td>
<td>Cavanagran Road</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>A182</td>
<td>Cavanagran Road</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>A183</td>
<td>Cartron Road</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>A185</td>
<td>Cartron Road</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>A186</td>
<td>Ballybrin Road</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>A187</td>
<td>Ballybrin Road</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>A188</td>
<td>Ballybrin Road</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>A189-85X</td>
<td>Cartron Road</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>A190</td>
<td>Drumkilcroy Road</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>A191</td>
<td>Drumkilcroy Road</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>A192</td>
<td>Drumkilcroy Road</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>A193</td>
<td>Ennacloy Road</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>A194</td>
<td>Ennacloy Road</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>A195</td>
<td>Ennacloy Road</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>A196</td>
<td>Shaughnem Road</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>A197-93X</td>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>A198</td>
<td>Shaughnem Road</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>A199</td>
<td>Shaughnem Road</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>A200</td>
<td>Shaughnem Road</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>A200</td>
<td>Shaughnem Road</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>A201</td>
<td>Shaughnem Road</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>A202</td>
<td>Shaughnem Road</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>A203</td>
<td>Shaughnem Road</td>
<td></td>
</tr>
</tbody>
</table>

North-Western Route:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>A167</td>
<td>Ballyhov Road</td>
</tr>
<tr>
<td>61</td>
<td>A168</td>
<td>Monaghan Road</td>
</tr>
<tr>
<td>62</td>
<td>A169</td>
<td>Road Inconnu</td>
</tr>
<tr>
<td>63</td>
<td>A169</td>
<td>Monaghan Road</td>
</tr>
<tr>
<td>64</td>
<td>A170</td>
<td>Bredafield Road</td>
</tr>
<tr>
<td>65</td>
<td>A171</td>
<td>Bredafield Road</td>
</tr>
<tr>
<td>66</td>
<td>A172</td>
<td>Bredafield Road</td>
</tr>
<tr>
<td>67</td>
<td>A173</td>
<td>Bredafield Road</td>
</tr>
<tr>
<td>68</td>
<td>A174</td>
<td>Demetrie Road</td>
</tr>
<tr>
<td>70</td>
<td>A176</td>
<td>Demetrie Road</td>
</tr>
<tr>
<td>71</td>
<td>A177-71X</td>
<td>Unclassified</td>
</tr>
<tr>
<td>72</td>
<td>A178</td>
<td>Medan Road</td>
</tr>
<tr>
<td>74</td>
<td>A179-74X</td>
<td>Unclassified</td>
</tr>
<tr>
<td>75</td>
<td>A179</td>
<td>Unclassified</td>
</tr>
<tr>
<td>76</td>
<td>A180</td>
<td>Hankngagh Road</td>
</tr>
<tr>
<td>77</td>
<td>A182</td>
<td>Cavanagran Road</td>
</tr>
<tr>
<td>78</td>
<td>A182</td>
<td>Cavanagran Road</td>
</tr>
<tr>
<td>79</td>
<td>A183</td>
<td>Cartron Road</td>
</tr>
<tr>
<td>81</td>
<td>A185</td>
<td>Cartron Road</td>
</tr>
<tr>
<td>82</td>
<td>A186</td>
<td>Ballybrin Road</td>
</tr>
<tr>
<td>83</td>
<td>A187</td>
<td>Ballybrin Road</td>
</tr>
<tr>
<td>84</td>
<td>A188</td>
<td>Ballybrin Road</td>
</tr>
<tr>
<td>85</td>
<td>A189-85X</td>
<td>Cartron Road</td>
</tr>
<tr>
<td>86</td>
<td>A190</td>
<td>Drumkilcroy Road</td>
</tr>
<tr>
<td>87</td>
<td>A191</td>
<td>Drumkilcroy Road</td>
</tr>
<tr>
<td>88</td>
<td>A192</td>
<td>Drumkilcroy Road</td>
</tr>
<tr>
<td>89</td>
<td>A193</td>
<td>Ennacloy Road</td>
</tr>
<tr>
<td>90</td>
<td>A194</td>
<td>Ennacloy Road</td>
</tr>
<tr>
<td>91</td>
<td>A195</td>
<td>Ennacloy Road</td>
</tr>
<tr>
<td>92</td>
<td>A196</td>
<td>Shaughnem Road</td>
</tr>
<tr>
<td>93</td>
<td>A197-93X</td>
<td>Unclassified</td>
</tr>
<tr>
<td>94</td>
<td>A198</td>
<td>Shaughnem Road</td>
</tr>
<tr>
<td>95</td>
<td>A199</td>
<td>Shaughnem Road</td>
</tr>
<tr>
<td>100</td>
<td>A200</td>
<td>Shaughnem Road</td>
</tr>
<tr>
<td>101</td>
<td>A201</td>
<td>Shaughnem Road</td>
</tr>
<tr>
<td>102</td>
<td>A202</td>
<td>Shaughnem Road</td>
</tr>
<tr>
<td>103</td>
<td>A203</td>
<td>Shaughnem Road</td>
</tr>
</tbody>
</table>
Annex 9 – Overhead Line and Towers Access Assessment & AutoTracks of Accesses Requiring No Mitigation
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL

SCALE 1:500
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCING
- EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENC LINE
EXISTING WALL
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHER'S.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCeline
EXISTING WALL
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

ACCESS
SCALE 1:500

17.94
5.21
Max 270° Horiz
Max 10° Vert
4.48
1.15
3.066
4.71
1.33
2.88

PC EG TJR

NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

ACCESS
SCALE 1:500

17.94
5.21
Max 270° Horiz
Max 10° Vert
4.48
1.15
3.066
4.71
1.33
2.88

PC EG TJR
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCELINE
- EXISTING WALL
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCING LINE
- EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCeline
- EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL

Levels relate to Ordnance Survey datum. All data is in Irish Grid co-ordinates.
NOTE: All levels relate to Ordnance Survey datum
Drawing is in Irish Grid co-ordinates.

NOTE: All levels relate to Ordnance Survey datum
Drawing is in Irish Grid co-ordinates.

NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
NOTE: All levels relate to Ordnance Survey datum.
Drawing is in Irish Grid coordinates.

NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCeline
- EXISTING WALL
NOTE: All levels relate to Ordnance Survey datum. Drawing is in Irish Grid coordinates.

NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCENAME
EXISTING WALL
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCeline
EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCeline
EXISTING WALL
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCELINE
- EXISTING WALL

TyRone - CavAn InterConnectOR
TOWER ACCESS DRAWINGS
AT58SL

PROJECT MANAGEMENT INITIALS: DESIGNER: CHECKED: APPROVED:

The document contains various notes and specifications regarding the dimensions and design of a tower access area. It includes information on the dimensions in meters, references to a topographical survey, and notes on the approval process. The diagram illustrates the layout and dimensions of the area, with key lines indicating existing features such as verges, kerbs, hedges, and fence lines.
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGEROW
EXISTING FENCELINE
EXISTING WALL

NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

ACCESS SCALE 1:500

NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

ACCESS SCALE 1:500
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCeline
- EXISTING WALL

ACCESS
SCALE 1:500

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

Max 270° Horiz
Max 10° Vert

7.94
5.21
Max

4.48
1.15
2.88

3.06
4.71
1.33
2.88

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

Max 270° Horiz
Max 10° Vert

7.94
5.21
Max

4.48
1.15
2.88

3.06
4.71
1.33
2.88

NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCINE
- EXISTING WALL
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCeline
EXISTING WALL
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCLINE
EXISTING WALL
TYRONE - CAVAN INTERCONNECTOR

NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCeline
EXISTING WALL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCING
- EXISTING WALL
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY
- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCELINE
- EXISTING WALL
Annex 10 – Proposed Mitigation/Enhancement Measures
<table>
<thead>
<tr>
<th>Access Reference</th>
<th>Total Towers Accessed</th>
<th>Tower Numbers</th>
<th>Adjoining Road</th>
<th>Average Road Width (m)</th>
<th>Enhancement Mitigations Required</th>
<th>TM Shuttle Running at Access</th>
<th>TM Restricted Movements at Access</th>
<th>Access Widening Required</th>
<th>Access Required En Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 1</td>
<td>3</td>
<td>T1</td>
<td>Trewmount Road</td>
<td>6.12</td>
<td>None Required</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 2</td>
<td>1</td>
<td>T2</td>
<td>Derrigally Way</td>
<td>3.55</td>
<td>Access to be widened to facilitate construction vehicles.</td>
<td>❌ ❌ ❌ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 3-4-5-6</td>
<td>4</td>
<td>T1-T4, T5, T6</td>
<td>Trewmount Road</td>
<td>6.12</td>
<td>None Required</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 7</td>
<td>1</td>
<td>T7</td>
<td>Major Lane</td>
<td>2.7</td>
<td>Access to be widened to facilitate construction vehicle movements. Major Lane is noted to have approximately four passing locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 8-9</td>
<td>2</td>
<td>T8 & T9</td>
<td>Moy Road</td>
<td>9.9</td>
<td>None Required</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 10</td>
<td>1</td>
<td>T10</td>
<td>Culkeeran Road</td>
<td>4.2</td>
<td>There is sufficient verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>✓ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 11</td>
<td>1</td>
<td>T11</td>
<td>Culkeeran Road</td>
<td>4.2</td>
<td>None Required</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 12</td>
<td>1</td>
<td>T12</td>
<td>Culkeeran Road</td>
<td>4.2</td>
<td>None Required</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 13</td>
<td>1</td>
<td>T13</td>
<td>Phone Road</td>
<td>2.98</td>
<td>Access to be widened to facilitate construction vehicles. Phone Road is noted to have approximately six passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 14</td>
<td>1</td>
<td>T14</td>
<td>Phone Road</td>
<td>2.98</td>
<td>Construction vehicles will be required to reverse into the site and will therefore require onsite personnel to stop traffic to facilitate this manoeuvre. Road is noted to have approximately six passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ❌ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 15</td>
<td>1</td>
<td>T15</td>
<td>Goreystown Road</td>
<td>5.05</td>
<td>None Required</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 16-17</td>
<td>2</td>
<td>T16, T17</td>
<td>Culrevog Road</td>
<td>2.85</td>
<td>No issues with access. The Culrevog Road has approximately nine passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 18</td>
<td>1</td>
<td>T18</td>
<td>Culrevog Road</td>
<td>2.85</td>
<td>Access to be widened to facilitate construction vehicles.</td>
<td>❌ ❌ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 19</td>
<td>1</td>
<td>T19</td>
<td>Culrevog Road</td>
<td>2.85</td>
<td>Access to be widened to facilitate construction vehicles. The Culrevog Road has approximately nine passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 20</td>
<td>1</td>
<td>T20</td>
<td>Benburb Road</td>
<td>5.39</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>❌ ✓ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 21</td>
<td>1</td>
<td>T21</td>
<td>Benburb Road</td>
<td>5.39</td>
<td>None Required</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 22-23</td>
<td>2</td>
<td>T22 & T23</td>
<td>Benburb Road</td>
<td>5.39</td>
<td>None Required</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 23SL</td>
<td>0</td>
<td>N/A</td>
<td>Drumlee Road</td>
<td>3.03</td>
<td>No issues with access. The Drumlee Road has approximately six passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 24-25</td>
<td>2</td>
<td>T24 & T25</td>
<td>Drumlee Road</td>
<td>3.03</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point. The Drumlee Road has approximately six passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ✓ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 26</td>
<td>1</td>
<td>T26</td>
<td>Benburb Road</td>
<td>5.39</td>
<td>There is sufficient verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>✓ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 27-28</td>
<td>2</td>
<td>T27 & T28</td>
<td>Drumlee Road</td>
<td>3.03</td>
<td>No issues with access. The Drumlee Road has approximately six passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 29</td>
<td>1</td>
<td>T29</td>
<td>Dunfeacle Road</td>
<td>5.65</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>❌ ✓ ❌ ❌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 30</td>
<td>1</td>
<td>T30</td>
<td>Tullydowey Road</td>
<td>3.15</td>
<td>Access to be widened to facilitate construction vehicles. The Tullydowey Road has approximately six passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 31-32A</td>
<td>2</td>
<td>T31 & T32</td>
<td>Tullydowey Road</td>
<td>3.15</td>
<td>No issues at access. The Tullydowey Road has approximately six passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>❌ ❌ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Reference</td>
<td>Total Towers Accessed</td>
<td>Tower Numbers</td>
<td>Adjoining Road</td>
<td>Average Road Width (m)</td>
<td>Enhancement Mitigations Required</td>
<td>TM Shuttle Running at Access</td>
<td>TM Restricted Movements at Access</td>
<td>Access Widening Required</td>
<td>TM Required En Route</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>AT 32B</td>
<td>1</td>
<td>T12</td>
<td>Tullydowey Road</td>
<td>3.15</td>
<td>Located at 'end of lane' therefore no issues at access. The Tullydowey Road has approximately six passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 33</td>
<td>1</td>
<td>T13</td>
<td>Artasooly Road</td>
<td>4.69</td>
<td>There is sufficient verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 33 SL</td>
<td>0</td>
<td>N/A</td>
<td>Artasooly Road</td>
<td>4.69</td>
<td>None Required</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 34</td>
<td>1</td>
<td>T14</td>
<td>Artasooly Road</td>
<td>4.69</td>
<td>Access to be widened to facilitate construction vehicles.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 35</td>
<td>1</td>
<td>T15</td>
<td>Artasooly Road</td>
<td>4.69</td>
<td>Access is too narrow to accommodate construction vehicles. However, there is sufficient verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 36</td>
<td>1</td>
<td>T16</td>
<td>Artasooly Road</td>
<td>4.69</td>
<td>None Required</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 37 SL-39</td>
<td>3</td>
<td>T17, T18 & T19</td>
<td>Artasooly Road</td>
<td>4.69</td>
<td>None Required</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 40</td>
<td>1</td>
<td>T40</td>
<td>Artasooly Road</td>
<td>4.94</td>
<td>None Required</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 41A</td>
<td>1</td>
<td>T41</td>
<td>Tullyaran Road</td>
<td>4.94</td>
<td>Access to be widened to accommodate construction vehicles.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 41B-42</td>
<td>2</td>
<td>T41 & T42</td>
<td>Tullyaran Road</td>
<td>4.94</td>
<td>Access to be widened to accommodate construction vehicles.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 43</td>
<td>1</td>
<td>T43</td>
<td>Tullynagh Road</td>
<td>4.4</td>
<td>Access movements limited to left in and right out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 44</td>
<td>1</td>
<td>T44</td>
<td>Battleford Road</td>
<td>6.61</td>
<td>None Required</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 45</td>
<td>1</td>
<td>T45</td>
<td>Battleford Road</td>
<td>6.61</td>
<td>Access is too narrow to accommodate construction vehicles. However, there is sufficient road width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 46</td>
<td>1</td>
<td>T46</td>
<td>Battleford Road</td>
<td>6.61</td>
<td>None Required</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 47</td>
<td>1</td>
<td>T47</td>
<td>Bracknagh Road</td>
<td>3.75</td>
<td>Access is too narrow to accommodate construction vehicles. However, there is sufficient verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 48 A</td>
<td>1</td>
<td>T48</td>
<td>Bracknagh Road</td>
<td>3.75</td>
<td>Access movements limited to left in and right out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 48 B</td>
<td>1</td>
<td>T48</td>
<td>Bracknagh Road</td>
<td>3.75</td>
<td>No issues at access. The Bracknagh Road has approximately nine passing opportunity locations and areas where the road widens, allowing construction vehicles to navigate to the site without issue.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 49 SL</td>
<td>1</td>
<td>T49</td>
<td>Bracknagh Road</td>
<td>3.75</td>
<td>Access movements limited to left in and right out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 50</td>
<td>1</td>
<td>T50</td>
<td>Bracknagh Road</td>
<td>3.75</td>
<td>Access to be widened to accommodate construction vehicles. The Bracknagh Road has approximately nine passing opportunity locations and areas where the road widens, allowing construction vehicles to navigate to the site without issue.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 51</td>
<td>1</td>
<td>T51</td>
<td>Navan Fort Road</td>
<td>2.98</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point. The route to the access will be via the Bracknagh Road and a 1km section of the Navan Fort Road, passing opportunities are available on both roads allowing construction vehicles to navigate to site without issue.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 52</td>
<td>1</td>
<td>T52</td>
<td>Navan Fort Road</td>
<td>2.98</td>
<td>Access to be widened to accommodate construction vehicles. The route to the access will be via the Bracknagh Road and a 1km section of the Navan Fort Road, passing opportunities are available on both roads allowing construction vehicles to navigate to site without issue.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>AT 52 SL</td>
<td>0</td>
<td>N/A</td>
<td>Navan Fort Road</td>
<td>2.98</td>
<td>Access to be widened to accommodate stringing location vehicles. The route to the access will be via the Bracknagh Road and a 1km section of the Navan Fort Road, passing opportunities are available on both roads allowing stringing location vehicles to navigate to site without issue.</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Access Reference</td>
<td>Total Towers Accessed</td>
<td>Tower Numbers</td>
<td>Adjoining Road</td>
<td>Average Road Width (m)</td>
<td>Enhancement Mitigations Required</td>
<td>TM Shuttle Running at Access</td>
<td>TM Restricted Movements at Access</td>
<td>Access Widening Required</td>
<td>TM Required En Route</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>AT53</td>
<td>1</td>
<td>T53</td>
<td>Killylea Road</td>
<td>7.15</td>
<td>None Required</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT54</td>
<td>1</td>
<td>T54</td>
<td>Killylea Road</td>
<td>7.15</td>
<td>Access movements limited to right in. All construction vehicles will be advised of restricted manoeuvres into the access and adequate signage will be provided at the access point.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT55</td>
<td>1</td>
<td>T55</td>
<td>Curnoean Road</td>
<td>5.33</td>
<td>None Required</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT56</td>
<td>1</td>
<td>T56</td>
<td>Curnoean Road</td>
<td>5.33</td>
<td>None Required</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT71-71SL1</td>
<td>1</td>
<td>T57 + T58</td>
<td>Unclassified Road</td>
<td>3.68</td>
<td>No issues at access. The road to the access has approximately six passing opportunity locations, allowing construction vehicles to navigate to the site without issue.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT71SL2</td>
<td>0</td>
<td>N/A</td>
<td>Unclassified Road</td>
<td>3.68</td>
<td>No issues at access. The road to the access has approximately six passing opportunity locations, allowing construction vehicles to navigate to the site without issue.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT71-71SL1</td>
<td>2</td>
<td>T59 + T60</td>
<td>Unclassified Road</td>
<td>3.68</td>
<td>Located at `end of lane’ therefore no issues at access. Access movements can be accommodated by access and unclassified road serves as an access for 3 properties therefore it is considered that no mitigation measures are required.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT61</td>
<td>1</td>
<td>T62</td>
<td>Ballyhoy Road</td>
<td>2.7</td>
<td>Located at `end of lane’ therefore no issues at access. Access movements can be accommodated by access and unclassified road serves as an access for 3 properties therefore it is considered that no mitigation measures are required.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT62SL</td>
<td>1</td>
<td>T63</td>
<td>Unclassified Road</td>
<td>3.00</td>
<td>Located at `end of lane’ therefore no issues at access. Access movements can be accommodated by access and unclassified road serves as an access for 3 properties therefore it is considered that no mitigation measures are required.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT62-63</td>
<td>2</td>
<td>T62 + T63</td>
<td>Monaghan Road spur</td>
<td>3.38</td>
<td>Located at `end of lane’ therefore no issues at access. Access movements can be accommodated by access and unclassified road serves as an access for 3 properties therefore it is considered that no mitigation measures are required.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT64</td>
<td>1</td>
<td>T64</td>
<td>Monaghan Road spur</td>
<td>3.38</td>
<td>Located at `end of lane’ therefore no issues at access. Access movements can be accommodated by access and unclassified road serves as an access for 3 properties therefore it is considered that no mitigation measures are required.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT65</td>
<td>1</td>
<td>T65</td>
<td>Brootafally Road</td>
<td>3.9</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT66</td>
<td>1</td>
<td>T66</td>
<td>Brootafally Road</td>
<td>3.9</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT67</td>
<td>1</td>
<td>T67</td>
<td>Brootafally Road</td>
<td>3.9</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT68A</td>
<td>1</td>
<td>T68</td>
<td>Dermak Road</td>
<td>3.71</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT68B</td>
<td>1</td>
<td>T68</td>
<td>Dermak Road</td>
<td>3.71</td>
<td>No issues at access. The road to the access has approximately seven passing opportunity locations, allowing construction vehicles to navigate to the site without issue.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT69</td>
<td>1</td>
<td>T69</td>
<td>Dermak Road</td>
<td>3.71</td>
<td>No issues at access. The road to the access has approximately four passing opportunity locations, allowing construction vehicles to navigate to the site without issue.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT70</td>
<td>1</td>
<td>T70</td>
<td>Dermak Road</td>
<td>3.71</td>
<td>No issues at access. The road to the access has approximately four passing opportunity locations from the Monaghan Rd direction, allowing construction vehicles to navigate to the site without issue.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT71-71SL1</td>
<td>1</td>
<td>T71</td>
<td>Dermak Road</td>
<td>3.15</td>
<td>Located at `end of lane’ therefore no issues at access. Approach road from Monaghan Road is private access road therefore passing opportunities not required.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT71SL2</td>
<td>0</td>
<td>N/A</td>
<td>Dermak Road</td>
<td>3.71</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT72</td>
<td>1</td>
<td>T72</td>
<td>Dermak Road</td>
<td>3.71</td>
<td>Existing access can accommodate construction vehicles; however the access is restricted to right in and left out. The road to the access has no passing opportunities from the Monaghan Road, however the access is located <1km from the Monaghan Road allowing construction vehicles to navigate to the site without issue.</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AT73</td>
<td>1</td>
<td>T73</td>
<td>Maddan Road</td>
<td>3.71</td>
<td>No issues at access. Approach road from Monaghan Road is private access road therefore passing opportunities not required.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Access Reference</td>
<td>Total Towers Accessed</td>
<td>Tower Numbers</td>
<td>Adjoining Road</td>
<td>Average Road Width (m)</td>
<td>Enhancement Mitigations Required</td>
<td>TM Shutdown Running at Access</td>
<td>TM Restricted Movements at Access</td>
<td>Access Widening Required</td>
<td>Access Widening En Route</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>AT74</td>
<td>1</td>
<td>T74</td>
<td>Unclassified Road</td>
<td>2.73</td>
<td>Access to be widened to accommodate construction vehicles. The road to the access has no passing opportunities and cannot facilitate a one way system. Therefore new passing opportunities will be required during the construction period with location to be agreed with land owners.</td>
<td>✗ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT74SL1A</td>
<td>0</td>
<td>N/A</td>
<td>Maddan Road</td>
<td>5.88</td>
<td>New access required as no existing access for stringing location.</td>
<td>✗ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT74SL1B</td>
<td>0</td>
<td>N/A</td>
<td>Maddan Road</td>
<td>2.73</td>
<td>The road to the access has no passing opportunities and cannot facilitate a one way system. Therefore new passing opportunities will be required during the construction period with location to be agreed with land owners.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT74SL2</td>
<td>0</td>
<td>N/A</td>
<td>Maddan Road</td>
<td>5.88</td>
<td>New access required as no existing access for stringing location.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT75</td>
<td>1</td>
<td>T75</td>
<td>Unclassified Road</td>
<td>2.73</td>
<td>Access movements limited to right in and left out. All construction vehicles will be advised of restricted manoeuvres and adequate signage will be provided at the access point.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT76</td>
<td>1</td>
<td>T76</td>
<td>Handslough Road</td>
<td>4.95</td>
<td>Access is too narrow to accommodate construction vehicles, however there is sufficient verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT77-78A</td>
<td>2</td>
<td>T77 + T78</td>
<td>Cavanagarvan Road</td>
<td>2.72</td>
<td>Access to be widened to accommodate construction vehicles. The Cavanagarvan Road has approximately ten passing opportunities between Maddan Rd and Drumhillery Rd allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT77-78B</td>
<td>2</td>
<td>T78 + T79</td>
<td>Cavanagarvan Road</td>
<td>2.72</td>
<td>Access to be widened to accommodate construction vehicles. The Cavanagarvan Road has approximately ten passing opportunities between Maddan Rd and Drumhillery Rd allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT79</td>
<td>1</td>
<td>T79</td>
<td>Cavanagarvan Road</td>
<td>2.72</td>
<td>Access to be widened to accommodate construction vehicles. The Cavanagarvan Road has approximately ten passing opportunities between Maddan Rd and Drumhillery Rd allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT80</td>
<td>1</td>
<td>T80</td>
<td>Sheetrin Road</td>
<td>2.73</td>
<td>Access movements limited to right in and left out. The proposed access is located approximately 200m from the junction with the Cavanagarvan Road and therefore allows construction vehicles to navigate to the site without issue. Furthermore the Cavanagarvan Road is noted to have has approximately ten passing opportunities.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT81</td>
<td>1</td>
<td>T81</td>
<td>Sheetrin Road</td>
<td>2.73</td>
<td>Access to be widened to accommodate construction vehicles. The Sheetrin Road has approximately eight passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT82</td>
<td>1</td>
<td>T82</td>
<td>Sheetrin Road</td>
<td>2.73</td>
<td>Access to be widened to accommodate construction vehicles. The Sheetrin Road has approximately eight passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT83A</td>
<td>1</td>
<td>T83</td>
<td>Sheetrin Road</td>
<td>2.73</td>
<td>Access to be widened to accommodate construction vehicles. The Sheetrin Road has approximately eight passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT83B</td>
<td>1</td>
<td>T83</td>
<td>Sheetrin Road</td>
<td>2.73</td>
<td>Access to be widened to accommodate construction vehicles. The Sheetrin Road has approximately eight passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT84</td>
<td>1</td>
<td>T84</td>
<td>Sheetrin Road</td>
<td>2.73</td>
<td>Access to be widened to accommodate construction vehicles. The Sheetrin Road has approximately eight passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT85</td>
<td>1</td>
<td>T85</td>
<td>Sheetrin Road</td>
<td>2.73</td>
<td>No issues at access. The Sheetrin Road has approximately eight passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT85SL</td>
<td>0</td>
<td>N/A</td>
<td>Drumhillery Road</td>
<td>4.63</td>
<td>None Required</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT86</td>
<td>1</td>
<td>T86</td>
<td>Drumhillery Road</td>
<td>4.63</td>
<td>Access is too narrow to accommodate construction vehicles, however there is sufficient verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT87A</td>
<td>1</td>
<td>T87</td>
<td>Drumhillery Road</td>
<td>4.63</td>
<td>None Required</td>
<td>✗ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Access to Construction Sites

<table>
<thead>
<tr>
<th>Access Reference</th>
<th>Total Towers Accessed</th>
<th>Tower Numbers</th>
<th>Adjoining Road</th>
<th>Average Road Width (m)</th>
<th>Enhancement Mitigations Required</th>
<th>TM Shuttle Running at Access</th>
<th>TM Restricted Movements at Access</th>
<th>Access Widening Required</th>
<th>TM Required En Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT87B</td>
<td>1</td>
<td>1 T87</td>
<td>Tivnacree Road</td>
<td>2.76</td>
<td>No issues at access. However a section of the Tivnacree Road to the south of the access is too narrow for construction vehicles to pass through, therefore the access is to be limited to left in and right out. There are four passing opportunities to the north between the access point and Drumhilly Road allowing construction vehicles to navigate to the site without issue.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT88</td>
<td>1</td>
<td>1 T88</td>
<td>Tivnacree Road</td>
<td>2.76</td>
<td>No issues at access. However a section of the Tivnacree Road to the south of the access is too narrow for construction vehicles to pass through, therefore the access is to be limited to left in and right out. There are four passing opportunities to the north between the access point and Drumhilly Road allowing construction vehicles to navigate to the site without issue.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT89</td>
<td>1</td>
<td>1 T89</td>
<td>Tivnacree Road</td>
<td>2.76</td>
<td>No issues at access, however construction vehicles will be limited to turning right only. The Tivnacree Road has approximately five passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT90</td>
<td>1</td>
<td>1 T90</td>
<td>Tivnacree Road</td>
<td>2.76</td>
<td>No issues at access, however construction vehicles will be limited to left in and right out. The Tivnacree Road has approximately five passing opportunity locations allowing construction vehicles to navigate to the site without issue.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT91</td>
<td>1</td>
<td>1 T91</td>
<td>Glassdrummond Road</td>
<td>3.18</td>
<td>Access to be widened to facilitate construction vehicles. The Glassdrummond Road has approximately four passing opportunities on the approach from the Fergot Road allowing construction vehicles to navigate to the site without issue.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT92</td>
<td>1</td>
<td>1 T92</td>
<td>Glassdrummond Road</td>
<td>3.18</td>
<td>No issues at access. The Glassdrummond Road has approximately four passing opportunities on the approach from the Fergot Road allowing construction vehicles to navigate to the site without issue.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT93-94</td>
<td>2</td>
<td>1 T93 + 1 T94</td>
<td>Unclassified Road</td>
<td>3.18</td>
<td>Access is limited to left in and right out. The access road on approach from the Fergot Road has three passing opportunities allowing construction vehicles to navigate to the site without issue.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT95</td>
<td>1</td>
<td>1 T95</td>
<td>Fergot Road</td>
<td>5.5</td>
<td>None Required</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT96</td>
<td>3</td>
<td>1 T96</td>
<td>Unclassified Road</td>
<td>3</td>
<td>No issues at access. The access road on approach from the Fergot Road has four passing opportunities allowing construction vehicles to navigate to the site without issue.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT97</td>
<td>1</td>
<td>1 T97</td>
<td>Listrakelt Road</td>
<td>2.5</td>
<td>Access geometry limited and no passing opportunities exist on the section of Listrakelt Road between the Doohat Road and Doohat Road. No dwellings are located on this section of road therefore it will be designated one way entering from the Doohat Road and exiting onto the Doohat Road. Construction vehicles will be required to reverse into the access point and then exit right out only.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT98</td>
<td>1</td>
<td>1 T98</td>
<td>Listrakelt Road</td>
<td>2.5</td>
<td>Access geometry limited and no passing opportunities exist on the section of Listrakelt Road between the Doohat Road and Doohat Road. No dwellings are located on this section of road therefore it will be designated one way entering from the Doohat Road and exiting onto the Doohat Road. Construction vehicles will be required to reverse into the access point and then exit left out only.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT99</td>
<td>1</td>
<td>1 T99</td>
<td>Doohat Road</td>
<td>4.15</td>
<td>Access too narrow to accommodate construction vehicles, however there is sufficient verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT100</td>
<td>1</td>
<td>1 T100</td>
<td>Derrynoose Road</td>
<td>5.98</td>
<td>Access too narrow to accommodate construction vehicles, however there is sufficient road/ verge width at the site access to allow for a construction vehicle to park and be traffic managed via a one way shuttle system.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT101</td>
<td>1</td>
<td>1 T101</td>
<td>Derrynoose Road</td>
<td>5.98</td>
<td>None Required</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT102A</td>
<td>1</td>
<td>1 T102</td>
<td>Unclassified Road</td>
<td>2.83</td>
<td>Access to be widened to accommodate construction traffic. The road to the access contains no passing opportunities and represents a hazard to other road users. Therefore it is proposed to implement a one way system on the access road entering from the Doohat Road and exiting onto the Legnare Road, which links onto the L1530/Derrynoose Road. There are fixing properties that access onto the road which will require notification of the temporary one system operation during construction works.</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- TM Shuttle: Traffic Management Shuttle
- TM Restricted: Traffic Management Restricted
- Access Widening: Access to be widened
- TM Required: Traffic Management Required

Access Enhancements:
- None Required
- Access to be widened
- Access to be widened to facilitate construction traffic.
<table>
<thead>
<tr>
<th>Access Reference</th>
<th>Total Towers Accessed</th>
<th>Tower Numbers</th>
<th>Adjoining Road</th>
<th>Average Road Width (m)</th>
<th>Enhancement Mitigations Required</th>
<th>TM Shuttle Running at Access</th>
<th>TM Restricted Movements at Access</th>
<th>Access Widening Required</th>
<th>TM Required</th>
<th>En Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT102B</td>
<td>1</td>
<td>T102</td>
<td>Undassified Road</td>
<td>2.83</td>
<td>Access to be widened to accommodate construction traffic. The road to the access contains no passing opportunities and represents a hazard to other road users. Therefore it is proposed to implement a one way system on the access road entering from the Doohat Road and exiting onto the Legmare Road, which links onto the L3530/ Derrynoose Road. There are six properties that access onto the road which will require notification of the temporary one system operation during construction works.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ATOS</td>
<td>0</td>
<td>N/A</td>
<td>Crossbane Road</td>
<td>3.65</td>
<td>No issues with access. The Crossbane Road contains five passing opportunities allowing stringing vehicles to navigate to the site without issue.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
-LINE OF EXISTING VERGE
-EXISTING KERBS
-EXISTING HEDGELINE
-EXISTING FENCING LINE
-EXISTING WALL
-PROPOSED EDGE OF VERGE

ACCESS
SCALE 1:500

SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

MAJOR LANE

VISIBILITY SPLAYS
2.0m x 33m

TYRONE - CAVAN INTERCONNECTOR
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
PROPOSED EDGE OF VERGE

NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
PROPOSED EDGE OF VERGE

SCALE 1:500
ACCESS

SCALE 1:250
SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS

2.0m x 33m VISIBILITY SPLAYS
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING LINE
EXISTING WALL
PROPOSED EDGE OF VERGE

SWEP PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250

JCB Fastrac 2170 and 8m trailer

NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING LINE
EXISTING WALL
PROPOSED EDGE OF VERGE
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
PROPOSED EDGE OF VERGE

NOTES BT POLE TO BE RELOCATED

2.0m x 33m VISIBILITY SPLAYS

NOTE BT POLE TO BE RELOCATED

VISION SPLAYS

Max 270° Horiz
Max 10° Vert

JCB Fastrac 2170 and 8m trailer
OverallLength 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
PROPOSED EDGE OF VERGE

NOTES
LIMITED TO LEFT IN AND RIGHT OUT

ACCESS
SCALE 1:500

SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250

Project Management Initials: Designer: Checked: Approved:
NOTES:
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
PROPOSED VERGE LINE

2.0m x 33m VISIBILITY SPLAYS

ACCESS
SCALE 1:500

SWEPT PATHS OF FASTRAC MANEUVRING THROUGH ACCESS
SCALE 1:250

TYRONE - CAVAN INTERCONNECTOR
TOWER ACCESS DRAWINGS
AT50

PC EG TJR

JCB Fastrac 2170 and 8m trailer
Overall Length
13.406m
Overall Width
2.550m
Overall Body Height
2.725m
Min Body Ground Clearance
0.662m
Max Track Width
2.550m
Lock to Lock Time
4.00s
Wall to Wall Turning Radius
10.400m

FILENAME: F:\PROJECTS\DEVELOPMENT - NS INTERCONNECTOR\LATEST WORK\ACAD\WORKING\ACCESS\TOWER 49+50.DWG
Last saved by: CRAIG PS
Last Plotted: 4/4/2013 5:19 PM ISO A3 297mm x 420mm
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
PROPOSED EDGE OF VERGE

ACCESS
SCALE 1:500

SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS SCALE 1:250

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Max Body Ground Clearance 0.662m
Max Track Width 2.550m
Wall to Wall Turning Radius 10.400m

2.0x3m VISIBILITY SPLAYS

VISIBILITY SPLAY TANGENTIAL TO BACK OF VERGE

NAVAN FORT ROAD
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCALINE
EXISTING WALL
PROPOSED EDGE OF VERGE

ACCESS
SCALE 1:500

NOTE JUNCTION OPERATES AS LEFT IN RIGHT OUT ONLY

SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS SCALE 1:250

NOTES

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Max Body Ground Clearance 1.15m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Max Body Ground Clearance 1.15m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCALINE
EXISTING WALL
PROPOSED EDGE OF VERGE

ACCESS
SCALE 1:500
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
PROPOSED EDGE OF VERGE

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

Max 270° Horiz
Max 10° Vert
NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
- LINE OF EXISTING VERGE
- EXISTING KERBS
- EXISTING HEDGELINE
- EXISTING FENCELINE
- EXISTING WALL
- PROPOSED EDGE OF VERGE

ACCESS SCALE 1:500

SWEEP PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250

TELEGRAPH POLE REQUIRES RELOCATION

2.0m x 33m VISIBILITY SPLAYS

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

CAVANAGARVAN ROAD

Project Management Initials: Designer: Checked: Approved:
SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Min Body Ground Clearance 0.662m
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

- **LINE OF EXISTING VERGE**
- **EXISTING KERBS**
- **EXISTING HEDGELINE**
- **EXISTING FENCING**
- **EXISTING WALL**
- **PROPOSED EDGE OF VERGE**

LOCAL WIDENING OF CARRIAGEWAY ON APPROACH TO PROPOSED ACCESS

VISIBILITY SPLAYS

VISIBILITY SPLAYS TANGENTIAL TO BACK OF VERGE

2.0x3m VISIBILITY SPLAYS

NOTE ACCESS RIGHT IN AND LEFT OUT ONLY

SWEP PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS

SCALE 1:250

PROJECT MANAGEMENT INITIALS:

Designer:

Checked:

Approved:

TYRONE - CAVAN INTERCONNECTOR TOWER ACCESS DRAWINGS

AT8160032220"
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
PROPOSED EDGE OF VERGE

ACCESS
SCALE 1:500

SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250

NOTE ACCESS LEFT IN AND RIGHT OUT ONLY

VISIBILITY SPLAYS

2.0m x 33m
Silent Paths of Fastrac Maneuvering Through Access

Scale 1:250

NOTES
1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY
LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING LINE
EXISTING WALL
PROPOSED EDGE OF VERGE

Local widening of carriageway on approach to proposed access
2.0x3.3m visibility splays

Access
Scale 1:500

NOTE ACCESS LEFT IN AND RIGHT OUT ONLY
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.
2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.
3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCELINE
EXISTING WALL
PROPOSED EDGE OF VERGE

NOTE ACCESS LEFT IN AND RIGHT OUT ONLY

SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250

ACCESS
SCALE 1:500

VISIBILITY SPLAYS TANGENTIAL TO BACK OF VERGE

2.0m x 33m VISIBILITY SPLAYS
NOTES

1. **ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.**

2. **DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.**

3. **DESIGN SUBJECT TO APPROVAL**

KEY

- **LINE OF EXISTING VERGE**
- **EXISTING KERBS**
- **EXISTING HEDGELINE**
- **EXISTING FENCeline**
- **EXISTING WALL**
- **PROPOSED EDGE OF VERGE**

JCB Fastrac 2170 and 8m trailer

- **Overall Length:** 13.406m
- **Overall Width:** 2.550m
- **Overall Body Height:** 2.725m
- **Min Body Ground Clearance:** 0.662m
- **Max Track Width:** 2.550m
- **Lock to Lock Time:** 4.00s
- **Wall to Wall Turning Radius:** 10.400m

SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS

SCALE 1:250

NOTE ACCESS RIGHT IN AND LEFT OUT ONLY

SCALE 1:500

EXISTING KERBS

EXISTING HEDGELINE

EXISTING FENCeline

EXISTING WALL

PROPOSED EDGE OF VERGE
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
PROPOSED EDGE OF VERGE

ACCESS
SCALE 1:500

SWEEP PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCLINE
EXISTING WALL
PROPOSED EDGE OF VERGE

ACCESS
SCALE 1:500

SWEPT PATHS OF FASTRAC MANOEUVRING THROUGH ACCESS
SCALE 1:250

NOTE ACCESS IS RIGHT IN AND LEFT OUT ONLY

2.0x33m VISIBILITY SPLAYS
NOTES

1. ALL DIMENSIONS IN METRES UNLESS OTHERWISE STATED.

2. DESIGN BASED UPON TOPOGRAPHICAL SURVEY SUPPLIED BY OTHERS.

3. DESIGN SUBJECT TO APPROVAL

KEY

LINE OF EXISTING VERGE
EXISTING KERBS
EXISTING HEDGELINE
EXISTING FENCING
EXISTING WALL
PROPOSED EDGE OF VERGE

ACCESS
SCALE 1:500

SWEPT PATHS OF FASTRAK MANOEUVRING THROUGH ACCESS
SCALE 1:250

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Ground Clearance 0.662m
Max 270° Horiz
Max 10° Vert
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

JCB Fastrac 2170 and 8m trailer
Overall Length 13.406m
Overall Width 2.550m
Overall Body Height 2.725m
Ground Clearance 0.662m
Max 270° Horiz
Max 10° Vert
Max Track Width 2.550m
Lock to Lock Time 4.00s
Wall to Wall Turning Radius 10.400m

VISIBILITY SPLAYS TANGENTIAL TO BACK OF VERGE
2.0x33m VISIBILITY SPLAYS

2.0x33m VISIBILITY SPLAYS
Annex 11 - Construction Traffic Management Plan
TA Annex 11: Construction Traffic Management Plan

Introduction
A Construction Traffic Management Plan (CTMP) is a framework document for ensuring work activities in, near or having impact upon the public highway, are undertaken safely and with minimal impact on traffic movement and existing infrastructure throughout the works programme.

The CTMP is a live ‘working’ document that will be responsive to changing construction activities throughout the works. It is likely that the programme of works will stretch beyond substantial completion of construction activities to cover, snagging and commissioning activities. The CTMP will cover this and may also be extended to form part of the operation and maintenance plan component of the Safety File. The CTMP will only cease to be a working document on full completion of the works.

The following text provides a synopsis of the CTMP format and presents the key features that will be incorporated into the plan through its life.

CTMP Framework
The CTMP will primarily be prepared in two stages, with each stage approved by Roads Service:

- Stage 1 prepared at Design Stage by the Design Team
- Stage 2 prepared at Construction Stage by the Contracting team

As highlighted above the CTMP may be developed further into a third stage of incarnation and form part of the long term operational plan for the constructed works. This will be in full agreement again with Roads Service.

The plan itself will not only address the generalities of health and safety but will also provide guidance on methodologies, formalities, licensing and approval procedures all aimed at reducing the risk of impact on operatives, the general public and the efficient operation of the surrounding public highway. The following categories will form the basis of the CTMP:

- Contact Personnel, Notification & Licensing
- Overseeing Authority and Statutory Procedures
- Duties imposed by Legislation, Regulation and Codes of Practice
- Design and Site Specific Constraints
- Localised Temporary Traffic Control
- Accessibility to the individual construction sites from the public highway (both temporary and permanent).
 - Permanent accesses being designed in accordance with the Planning Service Development Advice Note 15 “Vehicular Access Standards” or DMRB Volume 6 Section 2 Part 6 TD41/95 “Geometric Design of Major/Minor Priority Junctions”.
 - Temporary accesses, where applicable, being designed in accordance with Chapter 8 of the Traffic Signs Manual.
- Temporary Parking Provision
- Emergency Procedures
- Maintenance Plan for the Public Highway
• Appendices with relevant information such as traffic data, planned events and security measures.

Another fundamental component of the CTMP is the preparation of drawings and specifications clearly documenting the construction process and the management of the local traffic through the course of the main construction works at each of the individual access points. This set of option/scheme drawings will be developed into detail drawings by the selected contractor, to ensure the works are undertaken in clear and progressive manner. The contractor will also develop the Design Stage Plan and make certain that the minimum standards established at stage 1 are developed sufficiently for construction. Any development of the CTMP prior to commencement of construction must be approved in writing by the Overseeing Authority. Further expansion on these key elements is provided in the following sections.

Overseeing Authority, Statutory Duty and Consultation

In Northern Ireland the Overseeing Authority, and body responsible for setting policy with respect to road based infrastructure and traffic management is The Department for Regional Development – Roads Service. Roads Service will be consulted in advance of, and throughout, the preparation of the Design Stage CTMP and liaised with at all stages through the course of the works by the selected contractor and employer’s representative.

In order to fulfil their obligations, Road Service will provide direction in respect of policy and legislation as it dictates the production and implementation of the CTMP. Roads Service, as Overseeing Authority, must ensure that current policy and legislation are being applied throughout.

The following legislation is relevant to the preparation of the CTMP and imposes duties on the Overseeing Authority and Statutory Undertakers (and or their agents) in respect of Temporary Traffic Management and the impact of works on the public highway:

• The Street Works (Northern Ireland) Order 1995
• The Street Works (Amendment) (Northern Ireland) Order 2007
• The Road Traffic Regulation (Northern Ireland) Order 1997

In addition to Road Service, and as part of the overall consultation process, all statutory bodies and key stakeholders will be consulted. Any issues or concerns raised will be written into the CTMP together with appropriate and agreed mitigation measures. A non-exhaustive list of those parties that will be consulted is provided below:

• Landowners
• PSNI
• NIEA
• Waterways Ireland
• Rivers Agency
• Local Government Departments
• Other Statutory Undertaker

Works Description

The NIE Tyrone Cavan Interconnector Project, ‘the Works’, are to be undertaken by a Statutory Undertaker, Northern Ireland Electricity (NIE). NIE are a licensee under The Street Works (Northern Ireland) Order 1995; and as such any works undertaken within the public highway can only be undertaken following provision of the required notice under the order, and approval of the Construction Stage CTMP by the Overseeing Authority. While the
majority of the proposed works will be outside the public highway boundary, the movement of construction traffic, deliveries and access arrangements will still require the approval of Roads Service prior to commencement. To ensure this progresses in a timely fashion, the Preliminary (Design Stage) CTMP will be agreed prior to the tendering process and contractor selection.

Any enabling works proposed that will impact on the public highway will also be accounted for within the CTMP and be undertaken to the satisfaction of Roads Service to comply fully with approved Codes of Practice. (e.g. All excavation and reinstatement will comply with the methods identified in the Northern Ireland Roads Authority Utilities Committee (NIRAUC) Specification.)

Temporary Traffic Control ‘the Works’

As identified earlier, the CTMP will be prepared in two stages. The Design Stage Plan will present options for the localised traffic routing, control and access to individual construction sites using temporary traffic management drawings and specifications in the form of a story board. This will be prepared in accordance with Chapter 8 of the Traffic Signs Manual. The design team will prepare the traffic control options as part of the Stage 1 CTMP, agree the core principles with Road Service and issue to tendering organisations.

In addition to the daily traffic movements for construction and delivery related tasks, account will be provided for the day to day parking provision (off road) and emergency procedures at each of the individual sites. On schemes of a progressive nature like this, the provision will often be on a rolling short term basis as opposed to a static provision for long durations.

The appointed contractor will be expected to develop the core principles presented in the Stage 1 CTMP and the localised temporary traffic control measures to facilitate the construction of the works. It is the responsibility of the contractor to ensure that all temporary traffic management proposals are agreed with Roads Service prior to commencement of the works. All activities must be clearly documented with the proposed routing of normal and construction traffic presented clearly to ensure that all potential clashes are removed and the operation of the public highway remains at a manageable risk level.

Creating Temporary Accesses

The majority of the individual site accesses will be agreed with the appropriate landowner or stakeholder and Road Service through the consultation phase of the design. All necessary arrangements will be approved well in advance and included within the Stage 1 CTMP for development by the contractor and follow up agreement with Road Service, prior to commencement of the works. These will include:

a. Exact location and layout of each access;
b. The duration the access will be kept open;
c. The nature and extent of traffic using the access;
d. The construction make-up of the proposed access;
e. Details of any temporary traffic control measures;
f. Details for reinstatement of any openings on completion of the works.

Immediately following appointment, the contractor will follow the requirements of the Stage 1 CTMP to ensure that their proposed methodology is coordinated and aligned with Road Service’s understanding of the works. The contractor will consult and liaise with Roads Service in order to obtain the necessary approvals and licenses required prior to commencement of any works and in advance of making any opening for access to or egress from the existing public highway.